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Resumen 

La Esperanza del Cuadrado Medio (ECM) es un referente que se considera importante en el 

análisis de varianza; su utilidad radica en el análisis de variaciones entre grupos en diseños 

de investigación vía experimento. Dicho análisis debe considerar las nociones de factor fijo, 

aleatorio, cruzado o anidado, así como los modelos identificados. Esto permitirá generar la 

ECM que, a su vez, ayudará a realizar los contrastes de hipótesis necesarios para resolver el 

modelo. De esta manera, decidir sobre el rechazo o no de la hipótesis planteada es clave en 

las conclusiones que se presenten en la investigación que se desarrolla. Es un estudio 

documental que explora y explica el proceso de la ECM y responde a la pregunta ¿cómo 

ofrecer una explicación didáctica a través de exposición de reglas y sus aplicaciones para el 

cálculo de la ECM? Se concluye haciendo énfasis en la importancia de seguir 

recomendaciones y reglas para obtener la ECM. 

Palabras Claves: Esperanza de los Cuadrados Medios, aleatorio y modelos aleatorios.  
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Abstract 

The Mean Square Expectancy (ECM) is areference that is considered important in the análisis 

of variance; its usefulness lies in the analysis of variations between groups in experimental 

research designs. Said analysis must consider the notions of fixed, rondom, crossed or nested 

factor, as well as the identified models. This will allow the generation of the ECM which, in 

turn, will help to carry out the hypothesis test necessary to salve the model. In this way, 

deciding whether or not to reject the proposed hypothesis is key to the conslusions presentad 

in the research that is developed. It is a documentary study that explores and explains the 

MSE process and answers the question: how to offer a didactic explanation through the 

presentation of rules and their applications for the calculation of the ECM? It concludes by 

emphasizing the importance of following recommendations and rules to obtain the ECM. 

Keywords: Expectancy of Mean Squares, random and random models. 

 

Resumo 

A Expectativa Quadrática Média (EQM) é uma referência considerada importante na análise 

de variância; Sua utilidade reside na análise de variações entre grupos em projetos de 

pesquisa experimental. Esta análise deverá considerar as noções de fator fixo, aleatório, 

cruzado ou aninhado, bem como os modelos identificados. Isto permitirá a geração do EQM 

que, por sua vez, ajudará a realizar os testes de hipóteses necessários à resolução do modelo. 

Desta forma, decidir se rejeita ou não a hipótese proposta é fundamental para as conclusões 

apresentadas na investigação que se desenvolve. É um estudo documental que explora e 

explica o processo de EQM e responde à questão: como oferecer uma explicação didática 

através da apresentação de regras e suas aplicações para o cálculo da EQM? Conclui 

enfatizando a importância de seguir recomendações e regras para obter a EQM. 

Palavras-chave: Expectativa de Quadrados Médios, modelos aleatórios e aleatórios. 
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Introduction 

In this paper, the topic of Expectation of the Mean Squares (ECM) is developed , 

which requires previous learning of the statistical model with all its implications: concept of 

population or universe, management of variables, measurement scales, assumptions of the 

model such as normality, homogeneity of variances, independence of errors; in itself, they 

are statistical knowledge related to the research methodology and, in this case, the ECM is 

used, in particular, in experimental research. 

It is specified that the ECM has been used almost exclusively by geneticists; this is 

because in genetics the presence of random variables or factors is very frequent in their 

models. Its use is required in certain special circumstances; for example, when sampling is 

done in the experimental units of a randomized complete block design and also, when in 

certain circumstances that arise when describing the inter-block information recovery process 

in incomplete block designs (Martínez, 1988). 

The above is stated because the sample observations in the experimental units are not 

randomized; that is, the samples in the experimental units are not independent, which has 

repercussions on the structure of the models, such as the generation of a Restriction Error 

(REE); that is, the model presents a restriction for its proper functioning of randomizing the 

blocks and, as they are not randomized, this REE arises and of course the ECM works to see 

the variation between the groups; ignoring it leads to not giving an adequate interpretation of 

results and not knowing which hypothesis to reject and which not to reject. (Martínez, 1988). 

The use of is la ECMnot only due to the presence of random factors in the model, but 

mainly because the treatments, due to their systematic location within the blocks, for some 

reason have not been randomized and also because the blocks are not randomized either, 

which occurs mainly in the agricultural sector and also in other areas of knowledge such as 

animal husbandry, biology, medicine, and industry. However, the conception that the blocks 

are randomized is erroneously carried over from Fisher (1936). 

Consequently, the presence of random factors and the non-randomization of one or 

more of these factors, including blocks, leads in both cases to the use of the EdeR la ECMand 

to pseudo-experimental research projects (observational and comparative). This allows for 

adequate hypothesis testing (knowing what to reject and what not to reject). 

When treatments have been properly randomized, the EofR is not necessary. The 

manipulation or transformation of the research material is also necessary for the experiment 
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to exist. However, even if the latter occurs, without randomization the experiment ceases to 

be one. 

Do geneticists and researchers in general consider this situation when they do 

research? Why can they be working with experiments when in reality they are not? In how 

many academic theses are these techniques used and in how many are they not used when 

they should be used? It is necessary to be aware of this situation. 

 

Fundamental methodological concepts 

It is necessary that methodology and statistics be taught in a dependent manner, 

depending on the type of research. Advisors, teachers, methodologists, statisticians and 

researchers in general must work on statistical techniques and their application to 

methodological procedures, thereby correctly applying methodological techniques to 

statistics. Therefore, the following is briefly pointed out: 

1. Practice the proper use of statistics and research in general and, in particular, research 

via experiment (Table 1), and so on in the rest of the ten types or research projects 

(Table 2), with the methodological steps that are required. 

2. Proper handling of randomization and blocks. 

3. Proper management of EdeR, NDE, confounding factor, hypothesis testing and many 

other classical techniques that are very frequently presented in the field of scientific 

research. 

Some methodological and statistical applications and clarifications inherent to theses and 

research projects are derived from the content of what is called the scientific research matrix 

(Tables 2 and 3), based on four dichotomous criteria (Tables 1 and 2), which when combined 

give rise to the ten types or projects of scientific research, topics that are briefly described 

below. 
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Table 1. Four criteria by which scientific research is classified 

Criterion 

number 

Dichotomous criterion Characteristics that define the criterion 

1 Observational-Experimental 

What defines the researcher 

Absence – presence (of randomization 

and manipulation of the research 

material) 

2 Prospective-Retrospective Present and future – Past 

3 Transversal-Longitudinal 

It is defined by the researcher 

One measurement - multiple 

measurements 

(evolution, monitoring of the 

phenomenon) 

4 Monogroup - Comparative A population or group – More than one 

group 

Source: (Mendez, 1984) 
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Table 2. Scientific research matrix. 

Source: Mendez (1984) 

 

Protocol 1 and 2 are both D (survey) and C (no experiment, no pseudo experiment). 

Protocols 3 and 4 are both D (survey) and B (pseudo experiment). 

Protocol 5 and 8 is C (not experiment or pseudo experiment). 

Protocol 6,7 and 9 are B (pseudo experiment) 

Protocol 10 is A (experiment). 

 

 

 

 

 

 

 

 

 

 

Combination of the four criteria for classifying research into ten types of scientific 

research design studies or projects (common name). 

  

                    

Dichotomous classification criteria 

        

 

1 

                 

 

2 

 

3 

                                         

 

4 

  

 

According to table 1 

Observational 

either 

Experimental 

Prospective 

either 

Retrospective 

Longitudinal 

either 

Cross 

Monogroup 

either 

Comparative 

Design, study or 

project. 

(Common name). 

Project 

and 

clue 
Observational Prospective Cross Monogroup Survey. Single 

group 
1 D -C 

Observational Retrospective Cross Monogroup Survey. Single 

group 
2 D -C 

Observational Prospective Cross Comparative Comparative 

Survey 
3 D -B 

Observational Retrospective Cross Comparative Survey. 

Comparative 
4 D -B 

Observational Retrospective Longitudinal Monogroup Case review 5 C 
Observational Retrospective Longitudinal Comparative 

Effect-cause 

Cases and controls 6-B 

Observational Retrospective Longitudinal Comparative 

Cause-effect 

Historical 

perspective 
7 B 

Observational Prospective Longitudinal Monogroup A cohort 8 C 
Observational Prospective Longitudinal Comparative Several cohorts 9- B 
Experimental Prospective Longitudinal 

Cross 

Comparative Experiment 10-A 
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Table 3. Subdivision of the scientific research matrix. 

According to table 2: dichotomous monogroup-comparative criterion and 

observational-experimental criterion; 

a new classification of research results. Four new projects: 

New classification of the 

Investigation. 

New type of projects. 

Quantity of each 

classification. 

Type of criterion. 

Number of project(s) 

and 

key(s) 

1. Experiment (A). Comparatives: 1 10-A 

2. Pseudo experiment (B). Comparatives: 5 3, 4, 6, 7, 9-B 

3. No experiments or pseudo experiments 

(C) 

Monogroup: 4 1, 2, 5, 8- C 

4. Surveys (D). 

 

Monogroup: 2 

Comparative: 2 

1, 2- D 

3, 4-D 

 Total: 14 Total: 14 

Fountain: Cienfuegos (1990) 

 There are 14 projects in this new classification (Table 3), instead of 10 (Table 2), because: 

• A project is an experiment (A), and comparative. 

• Five Projects are pseudo experiments (B) and, in addition, comparative. 

• There are four, not experiments or pseudo experiments (C), also monogroup 

• Two are single-group surveys (D) and two are comparative. 

Now, if research leads to research, then experimentation leads to experimenting. Let's 

see: The first (research) is present throughout Table 2 (the ten projects), whose common 

name is in column 5. The second (experimentation) is at the bottom of Table 2 (the 

experiment). That is to say, when an experiment is carried out, research is done; however, 

research may or may not be done with experiments. It is important to differentiate the concept 

of research from that of experimentation and to apply the latter to cases in which the project 

is truly an experiment. 

The experiment must meet the requirement of randomizing treatments and 

manipulating, transforming or modifying the research material. Randomizing means giving 

each participant or treatment the same chance of being included in the experiment. It should 

be clear that the experimental refers to the criterion, the experiment to the name of the project 

and the observational refers to the criterion, resulting in nine types of projects. 

If there is no randomization, there is no experiment. This leads to the observational 

criterion and in particular (as a comparative study) to the pseudo experiment; it also leads to 

the EdeR, NDE and, consequently, to the way of carrying out hypothesis tests, to know what 

to reject, what not to reject. Randomization is an inseparable characteristic of the experiment 

. 
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On the other hand, only in comparative projects (two or more populations) are 

confounding factors present. Its counterpart is the monogroup criterion. Both criteria 

(comparative and monogroup) are defined and determined by the researcher. 

Other authors call the monogroup criterion the descriptive criterion, interpreting it as 

the fact of studying a population, when its most important function is to describe. In this 

regard, the descriptive is not exclusive to a group, to a population, comparative projects are 

also described. On the other hand, the monogroup criterion (of a single group) explains itself. 

The above, in a brief and summarized form, constitutes the necessary and sufficient raw 

material for the reader to assimilate the ECM subject, whose rules are discussed below. 

 

Rules for calculating the ECM: Expected Values (EV), Variance Components (CV) 

Easy rules are presented to calculate ECM, which has so far been common in research 

practice, the use of fixed models, to test hypotheses by the mean squares ratio: Ratio of the 

mean square of the factor under hypothesis (as numerator), to the mean square of the error of 

the complete model (as denominator). Relationship called calculated F ( F c ). Mathematically 

it is expressed as follows: 

 

CM (of the factor under hypothesis) CM/Ho Gl . (numerator) 

                            Fc = ----------------------------------- = --------- F tables                                        

CME (of the full model) CME Gl . (denominator) 

 

Fc value is compared with the F value of tables , entering the degrees of freedom of 

the numerator, degrees of freedom ( Gl ) of the denominator and a certain level of significance 

alpha ( ), which does not necessarily have to be 5% or 1%, as is customary, because it could 

be, according to the needs of the phenomenon studied, 4%, 7%..., to then use the following 

decision rules: 

Yes, Fc  F tables Reject Ho: 1 = 2 = 3 =... = t =                                                                                                            

Yes, Fc  F tables Reject Ho: 1 = 2 = 3 =... = t =    

These rules are only valid for standard or classical models (fixed effects), provided that 

the variation factor under Hypothesis has been randomized; There may be two cases: 

a) A fixed, random or mixed effects model is built, regarding the presence or absence 

of random factors (researcher's decision). 

b) The model is built (based on the needs of the phenomenon studied) with one or more 

non-randomized factors. Pseudo experiments then arise (observational and 

comparative), which require the injection of the EdeR into the model. 
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In both cases it is necessary to calculate ECM, in order to highlight and make visible the 

test of the hypotheses involved in the research and, in the second case, also to inject one or 

more restriction errors into the model. 

The researcher must be aware, from the planning of his research, of the situations a and 

b mentioned, which help him define the research design, statistical-mathematical model, 

techniques and statistical tests. 

Specific case of the completely randomized design (CaA): 

This is a very special case, when the treatments have not been randomized (systematically 

placed). This situation frequently occurs in agro-ecological, biological, agricultural, 

livestock, forestry, medical and industrial studies, among others. Non-randomized treatments 

are often wrongly interpreted as true and independent repetitions (Martínez, 1988). They are 

not because they are correlated, originating pseudo experiments or quasi experiments, with 

EdeR; the calculation of the column (ECM) is required to carry out hypothesis tests. To carry 

out research, the following is recommended: 

a) Define, based on theory (deep knowledge of the phenomenon studied), the 

representative model of the population. 

b) Define the analysis of variance (AvA) table. Initially, with the columns of source of 

variation (SV), degrees of freedom (DF), mean square (MS) and ECM. How to define 

ECM for each source of variation? 

It is recommended to write, according to Santizio (1974), the following: 

• The name: AdeV Table. 

• Design Type: Common name, standard or not. 

• Indicate levels or treatments for each variation factor. 

• Accompany each term of the model with the following: 

Below the term: The symbol of its corresponding CV. 

Above the term: Indicate whether it is fixed or random, as well as the 

number that corresponds to it, according to the term number of the model 

(in a circle). 

For educational purposes, it is recommended that inexperienced researchers practice 

these sections. However, it is preferable to use them in all cases, in order to avoid making 

mistakes in the theoretical handling of the research. In addition: 

• Write the symbolic subscripts: i, j, k… and the real ones: a, b, r... 

• Describe for each thesis or project the assumptions of the model: 
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a) Type of data distribution 

b) Homogeneity of data 

c) Independence from errors. 

• Write the name of the dependent variable, usually symbolized as Y, on the 

left, at the top of the table. 

• If possible (for educational purposes), present the graph of the model. 

Model 1. Random bifactorial ( , and their interaction .), to calculate ECM. Note in 

table 1: All coefficients of variation (CV) remain. Why? Because the variation factors are 

all random. 

 

Table 4. The AdeV of Model 1 Bifactorial randomized Completely randomized design 

(CaA). 

Experimental research (via experiment), with two variation factors. 

  Random. Random.    

Model                  

           Y ijk  = + i +    j + ( ) ij   + k( ij ) (1) 

  
2
i  

2
j  

2
ij     

2   

 k( ij ) NI (0 ,  
2

) 

 

     

Source: Own elaboration 

    

  

 

 

 

 

Table 5. For the Random Bifactor Model 

Dependent variable Y    

FV GL CM ECM 

Factor i (Random) (a-1) CM                   

 
2 + rb 

2
i + r

2
ij        

Factor j (Random) (b-1) CM                         

 
2 + ra 

2
j + r

2
ij  

Int Factor : ( ) ij (a-1) (b-1) CM                         

 
2 + r

2
ij  

Error: k( ij ) Ab (r-1) CM  
2       

Total: Y ijk Apr-1   

Source: Own elaboration 

i = 1, 2, 3...a, levels of random factor i 

j = 1, 2, 3...b, levels of the random factor j 

k = 1, 2, 3...r, repetitions of each combination of 

treatments (balanced case). 

i, j, k are the symbolic 

subscripts 

a, b, r, are the real 

subscripts 
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Figure 1. Representation of the model, where i , j , are cross factors. 

 

                                              

 

 

 

 
 

                                                                  

 

 

 

Source: Own elaboration 

 

Description of the rules: When reading these rules, it is necessary to keep in mind the 

model (1). It will be assumed (in all examples) that everything is randomized (without EdeR). 

The application of the rules to calculate ECM is exemplified in principle with a random 

bifactorial model, which means that both factors and their interaction (when it exists) are 

random: 

• Rule 1. In the AdeV, column ECM, the coefficient of variation (CV) is written  
2 as 

the first term for all sources of variation. In the model in question, the error k( ij ) , 

(epsilon k, within ij ), is random and hierarchical or nested in ij . 

• Rule 2. For each source of variation, the CVs of the model are written in the ECM 

column with the following condition: The subscript(s) of the factor in question, for 

example, subscript i of i, must be in said CVs. 

• Rule 3. Automatically, according to rule 2, the subscribers that are not included are 

defined for each selected CV, whose values are placed as coefficients of said 

components, in addition to the coefficient r (number of repetitions), which are 

nothing more than the sample sizes (number of levels or treatments); that is, the 

sample sizes are replaced by their real value when carrying out the corresponding 

hypothesis tests. 

• Rule 4. In the ECM column, not all the CVs thus selected are in the row corresponding 

to the variation factor in question; that is, the CVs may or may not be in that row. 

According to this rule (of the components that should or should not be in the 

corresponding row), to find out, the following criteria are applied. (See Table 5). 

✓ For example, in the row for factor i , and located (in the ECM column), in 

each of the corresponding CVs. Thus, in the CV, 
2
ij of the subscribers ij , I 

k(ij) 

 i j 

Errores 

anidados 
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ignore i (because it is in the row for factor i ), leaving j; in such a way that if 

j is fixed the term disappears; but if j is random, the term remains. The same 

criterion applies to the rest of the CVs. It is a practical rule, which can be 

followed with interest. 

✓ Alternative rule to rule 4, even more practical than the previous one: the CVs 

of the model whose subscript(s) exactly match that of the variation factor in 

question, remain in the corresponding row (whether fixed or random). This is 

the case of variation factor i and j . 

Note that in Table 5, the CVs of each FV are left (because all sources of variation are 

random). This example encompasses or compresses all cases. To apply rules, focus on the 

following: 

1. In the terms of the model. 

2. In the symbolic subscripts (i, j, k...), for the model in question. 

3. In the real subscripts (a, b, r...), because they take a certain value. 

4. In the columns; FV, GL, F tables and ECM. 

5. In the CVs corresponding to each term of the model. 

6. In the rows containing the CVs in the ECM column. 

7. It is convenient to assign a number to the terms of the AdeV model and table, 

giving the number 1 to the error and the following to the rest of the terms from 

left to right. 

8. Define for each term of the model, those that are fixed and those that are 

random. 

 

Random bifactorial ( , and interaction ), to apply rules and calculate ECM: 

Application of rule 1: In all rows (already explained), the error is written as the first 

CV 
2    

Application of rule 2: Which defines the CVs for the corresponding row: The application 

of this rule is exemplified (for each variation factor), based on the AdeV table (Table 5), as 

follows: 

• In the first row: The variation factor i, whose subscriber is i, appears in the terms 

and of the model, whose CV, 
2
i and 

2
ij are written in the row of said factor, in 

addition to the CV, 
2  
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• In the second row: The variation factor j whose subscriber is j, appears in the terms 

and of the model, whose CVs are 
2
j and 

2
ij , are written in the row of said factor, 

in addition to the CV 
2  

• In the third row: In the interaction factor ( ) ij , the subscribers ij appear only in the 

term of the model, whose CV 
2
ij is written (for this reason) in said row, in addition 

to the CV 
2  

• In the fourth row : The subscribers k( ij ) of the error appear only in the model term, 

whose CV  
2 is written in the row corresponding to the error. 

Rule 3 application . Which defines (in the ECM column), for each row, the coefficients 

of each CV. One of them is always "r", except for 
2  

How to proceed for each variation factor: 

• In the first row , corresponding to the variation factor i : In the CV, r 
2
ij all 

subscribers are present, so there are no coefficients to write (only r). 

• In the same row, of the factor i , The CV rb 
2
i has as coefficient rb. Why? Because 

in said CV there is not the subscriber j = 1, 2, 3...b, this level b being the one that is 

placed as coefficient, in addition to r; that is: rb . 

• In the second row , corresponding to factor j : All subscribers are present in the 

CV 
2
ij , so there are no coefficients to write (only r). 

• In the same row corresponding to factor j, : The CV ra 
2
j its coefficient is ra , 

Why? Because in said CV, the subscribed i =1, 2,…a is not present, this level a 

being the one that is placed as a coefficient, in addition to r, that is: ra . 

• In the third row corresponding to the interaction ( ) ij ,: In the CV 
2
ij all 

subscribers are present, so there are no coefficients to write (only r). 

• In the fourth row , for the experimental error variation factor, only its CV is written:

 
2  

Application of rule 4. In each row la ECM, define which CV stays and which 

disappears or is eliminated. This is perhaps the most important rule. Four cases are 

presented: It is explained based on the fact that all CVs are random; that is, the raw material 

is Table 5. 
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For any model in question, it is recommended to present it as if all its terms were random 

and then apply the corresponding rules. 

a)   and   random Random model. It remains as in Table 5. 

b)  and , fixed Fixed, traditional, standard or classic model (the most used). 

c)  fixed  random Mixed random model 

d)  fixed  random Random mixed model 

 

To exemplify these cases, we continue using model 1 as a pattern. 

 

Illustration of case a : i , j  random s Random model 

It is common for these models to be referred to as class II or model II. For this case, based 

on model (1), Table 5 is derived, whose CV is explained below: 

1. In all rows of the ECM, the following is written as the first CV: 
2  

2. In the first row: In the CV r 
2
ij corresponding to the row of factor i , of the 

subscribers ij , I ignore i, (because we are in the row of factor i ) , leaving j. Since j 

is random, the CV r 
2
ij , remains (it is not eliminated). 

3. In the CV rb 
2
i of row i , whose subscriber is i, because it coincides exactly with 

the subscriber of factor i , the CV rb 
2
i remains. Whether fixed or random . This 

rule is considered as an alternative rule. 

4. In the second row: In the CV, r
2
ij  corresponding to the 

factor row j ; of the subscribers ij , I ignore j (because we are in the queue 

of j ; leaving i). Since i of i , the CV r 
2
ij that remains is random. 

5) In the CV ra 
2
j of the same row (of j ), whose subscriber is j, because it exactly 

coincides with that of factor j , said CV remains. Whether fixed or random. This rule 

is considered an alternative rule. 

6) In the third row, for the interaction: The CV r 
2
ij corresponding to the row of the 

interaction factor ( ) ij whose subscribers are ij , because both coincide exactly; the 

CV remains. Whether fixed or random. This rule is also considered as an alternative 

rule. 

Note in Table 5, since all FVs are random, all CVs remain. 
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Now, hypothesis testing for i , j (whose CVs 
2
i , 

2
j ), can be clearly seen with the 

corresponding NDEs, in relation to la ECMthe interaction ( ) ij . The interaction can be 

done in relation to the NDE, which is clearly seen in the AdeV table, in Table 5. 

Hypothesis test for factor i : 

 

Ho: 
2
i = 0         VS           H1:

2
i  0 

 

         (ECM)             
2  + rb 

2
i + r

2
ij  

Fc = ----------- = ----------------------------- = rb
2
i                                  

        (ECM)         
2 + r

2
ij  

 

Hypothesis test for factor j : 

 

Ho: 
2
j = 0        VS            H 1 :

2
j  0 

 

                                      (ECM)             
2

+ ra 
2
j + r

2
ij  

Fc = ---------- = ---------------------------- = ra
2
j                                

                                       (ECM)       
2

+ r
2
ij  

 

Hypothesis test for the interaction factor ( ) ij : 

 

Hi:
2
ij  = 0        VS H          1 :

2
ij  0 

 

 

         (ECM)       
2
+ r

2
ij  

Fc = ----------- = --------------- = r
2
ij                                                     

                                       (ECM)          
2
       

 

Consequently, for random models, tests are no longer done with the CM as if the 

effects were fixed: They are done using the NDE relationship, to know what to reject and 

what not to reject. 

Illustration of case b : i fixed, j fixed, Fixed model. 

They usually point out these models as class 1 or model 1. Based on Table 5 and applying 

rule 4, Table 7 is derived. In all the rows, only two CVs appear. Why don't the rest appear? 

Let's see. : 

1) In all rows of the ECM, it is written  
2 as the first CV. 
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2) For the first row corresponding to the row of the variation factor i , (Table 5): In the 

CV r 
2
ij ,), of the subscribers ij , I ignore i (because we are in the row of the factor i 

, leaving j. As j is fixed, the CV r 
2
ij , disappears. 

3) In the same row corresponding to factor i , The CV rb 
2
i whose subscriber is i, 

because it coincides exactly with that of factor i , the CV rb 
2
i remains, whether 

fixed or random . This rule is considered an alternative rule. 

4) In the second row corresponding to factor j , (table 1 ): In the CV r 
2
ij of subscribers 

ij , I ignore j, (because we are in the row of j ), leaving i. Since i is fixed, the CV r 


2
ij disappears. 

5) In the same row corresponding to factor j ,: The CV ra 
2
j whose subscriber j, by 

coinciding with that of factor j , remains, be it fixed or random . This rule is 

considered an alternative rule. 

6) In the third row corresponding to the interaction ( ) ij : whose CV r , because both 

subscribers 
2
ij ij coincide exactly , the CV r 

2
ij remains, sea fixed or random . A This 

rule is considered an alternative rule. Consequently, Tables 6 and 7 are as follows: 

 

 

Table 6. The AdeV of Model 2 CaA Design. Bifactorial. 

  Fixed Fixed Int Mistake  

Model       

           Y ijk  = + i + j + ( ) ij + k( ij ) (2) 

  
2
i  

2
j  

2
ij   

2   

Source: Own elaboration . 
 

i = 1, 2, 3... a, levels of factor i  Fixed . 

j = 1, 2, 3... b, levels of factor j . Fixed . 

k =1, 2, 3... r, repetitions of each combination 

of treatments (balanced case) 

i, j, k: These are the symbolic 

subscripts. 

a, b, r: These are the real subscripts. 
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Table 7. (from Table 5). For the Fixed Model 

Dependent var.: Y      

ECM  FV GL CM ECM 

                  

 
2
 + rb 

2
i + r

2
ij  

 (fixed) 

Factor i   

 

(a-1) 

 

CM 

                 

 
2
+ rb

2
i  

                  

 
2
+ ra 

2
j + r

2
ij        

 

 

(Fixed) 

j factor     

 

(b-1) 

 

CM 

                 

 
2
+ ra

2
j    

            

 
2
+ r

2
ij      

 

 

(Int.) 

Factor ( ) 

ij   

 

(a-1)(b-1) 

 

CM  

           

 
2
+ r

2
ij  

   

 
2
 

 

 

Random. 

Error: k( ij ) 

 

ab(r-1) 

 

CM 

    

 
2
 

  Total: Apr-1 CM Total  

Source: Own elaboration 

In the first column of Table 5, all the CVs that should be present when all terms are 

random, according to the established rules, are located. There, the rules are manipulated to 

define ECM in Table 7 (case b). 

Important: It is common to use the letter indicating the name of the factor as 
2
A subscripts : 

, 
2
B , 

2
AB , instead of 

2
i , 

2
j , 

2
ij . To be consistent, it is advisable to use symbolic subscripts 

because the model is explained more clearly based on these subscripts , which is more than 

enough reason. Also, because many other things are done based on them: 

1. The degrees of freedom (DF) column is defined in the AdeV table. 

2. The expressions used to calculate the sum of squares for each variation factor are 

defined in the sum of squares column. 

3. CVs are defined in the ECM column. 

4. Sample size is defined. 

It is important to note that tests for factors with all fixed effects models are done in the 

traditional way: Ratio of mean squares. In addition, interactions (significant) are more 

important than main effects, a relevant situation in factorial models. 

Illustration of case c: i fixed, j , random Mixed Random Model. 

From Table 4, model 1, and applying the rules already explained, Table 9 is derived. The 

presence or absence of CVs (whether they remain or not) is explained below: 

1) In all rows of the ECM, it is written  
2 as the first CV. 
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2) In the first row of table 1: In the CV r 
2
ij , in the row of factor i , of the subscribers 

ij , I ignore i, (because it is in the row of i ), leaving j. As j is random, the CV r 
2
ij , 

remains (it does not disappear). 

3) In the same row as factor i ,: The CV rb 
2
i , whose subscriber is i, because it 

coincides with that of factor i , the CV rb 
2
i , remains either fixed or random. 

4) Second row of factor j : In the CV r 
2
ij of subscribers ij . I ignore j, because it is in 

the row of j , leaving i. Since i of i is fixed, the CV disappears. 

5) In the same row as factor j : The CV ra 
2
j , whose subscriber is j, because it coincides 

with that of factor j , remains, whether fixed or random. 

6) Third row for the interaction ( ) ij : The CV 
2
ij , whose subscribers are ij , because 

both coincide, the CV 
2
ij , remains (whether fixed or random). 
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Table 8. The AdeV of Model 3 

CaA design. Bifactorial. 

 

  Fixed Random. Int 

(Random) 

Mistake  

Model       

Y ijk  = + i + j    + ( ) ij + k( ij ) (3) 

  
2
i  

2
j  

2
ij   

2   

Source: Own elaboration. 

 

 

i = 1, 2, 3...at levels of factor i , Fixed. 

J = 1,.2, 3...b levels of factor j , Random 

J = 1,.2, 3...r repetitions (balanced case) 

i, j, k, are the symbolic 

subscripts. 

a, b, r, are the real subscripts 

 

       

Table 9 . (from Table 5): For the Mixed Random Model 

Dependent var: Y      

ECM  FV GL CM ECM 

             

 
2 + rb 

2
i + r

2
ij  

 

 

(fixed) 

Factor i   

 

(a-1) 

 

CM 

               

 
2 + rb 

2
i + r

2
ij  

              

 
2 + ra 

2
j +r

2
ij  

 

 

(Random) 

Factor  j     

 

(b-1) 

 

CM 

              

 
2 + ra

2
j    

        

 
2 + r

2
ij    

 

 

Int 

(Random) 

Factor  

() ij   

  

(a-1)(b-1) 

 

CM  

              

 
2 + r

2
ij   

   

 
2  

 

 

(Random) 

Error: k( ij ) 

 

ab(r-1) 

 

CM 

    

 
2  

  Total: Abr-1 CM To  

Source: Own elaboration 

   

The first column corresponds to Table 4, which is where the rules are manipulated to define 

the last column, corresponding to Table 9; with practice, this is no longer necessary. You 

work directly with the terms of the model. 

Significance tests: Note in Table 9: The significance tests for the j factor  and 

Interaction ( ) ij , are done in the traditional way like this: 

 

Fc . = (CM) /(CM)   and   Fc . = (CM) /(CM)                     
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However, this is not the case for the significance test for the variation factor i , 

which will have to be determined with the following ECM relation, where (ECM) is 

taken as the error term. 

 

Ho: 
2
i = 0          VS             H1:

2
i  0 

 

         (ECM)          
2
 + rb 

2
i + r

2
ij  

Fc = ----------- = ------------------------ = rb
2
i                                

          (ECM)     
2
+ r

2
ij  

 

Case illustration d : i random j fixed: Mixed model Random . 

Opposite case to the above. How are the ECMs in each of the rows? Following the 

same reasoning in Table , Tables 10 and 11 are generated: 

 

Table 10 . The AdeV of Model 4 Completely randomized design ( CaA ). Bifactorial. 
 

  Alat . Fixed Int 

(Random) 

Mistake  

Model                          

Yijk  = +     Yo +     j     + ( ) ij +          k( ij ) (4) 

            
2
i  

2
j     

2
ij           

2
  

       

Source: Own elaboration 

 

i = 1, 2, 3... a, levels of factor i . Random 

j = 1, 2, 3... b, levels of factor j    Fixed 

k =1, 2, 3... r, repetitions (Balanced case) 

 

 

i, j, k: Symbolic subscripts.  

 

a, b, r: Real subscripts. 

 

 

Table 11 . (from Table 5). For the Random Mixed Model. 

Dependent Var.: Y      

ECM  FV GL CM ECM 

              

 
2 + rb 

2
i + r

2
ij   

 

 
(Random) 

Factor i   

  

(a-1) 

 

CM 

             

 
2 + rb

2
i   

             

 
2 + ra 

2
j +r

2
ij  

 

 
(Fixed) 

Factor  j  

  

(b-1) 

 

CM 

                

 
2 + ra 

2
j + r

2
ij   

        

 
2 + r

2
ij  

 

 
Int (random) 

Factor 8)ij   

 
(a-1)(b-1) 

  

CM 

         

 
2 + r

2
ij  

       
2   Error: k( ij ) ab(r-1) CM        

2
 

  Total: Abr-1 CM To  

Source: Own elaboration. 
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Significance tests for factors i and int . ( ) ij , in relation to the CV  
2 in 

traditional form, as follows: Fc = (CM) / (CM) and Fc = (CM) / (CM)                                               

However, this is not the case for the variation factor j , which will have to be done 

with the following ECM relation, where (ECM) is taken as the error term: 

Hi:
2
j  = 0            VS             H1:

2
j  0 

 

                            (ECM)                
2 + ra 

2
j + r

2
ij  

                    Fc = ---------- = -------------------------------= ra
2
j                                                    

                            (ECM)           
2 + r

2
ij  

 

 

More complicated models. Calculation of NDEs 

A first example is shown: suppose the following three-factor model ( , , , all 

random with 4, 2 and 5 levels). Structure: factorial housed in a BaA with 3 blocks, balanced 

case (see Table 13, model 5). 

i = 1, 2…a = 4 levels of factor i : random 

j = 1, 2…b = 2 levels of factor j : random  

k = 1, 2....c = 5 levels of factor k : random      

l = 1, 2....r = 3 repetitions l : random                  

i, j, k, l: symbolic subscripts. 

 

a, b, c, r: real subscripts. 

 
Table 12 . The AdeV of Model 5 

 

  TO TO TO TO TO TO TO TO TO  
Model               

And ijk  = + l + i + j + ( ) ij 

+ 

k 

+ 

( ) ik 

+ 

( ) jk 

+ 

( ) ijk 

+ 

k( ij 

) 

(5) 

   
2
i  

2
j  

2
ij  

2
k  

2
ik  

2
jk  

2
ijk   

2   

            

A Random    With       k( ij ) NI (0, 
2  

Source: Own elaboration 
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Table 13. For the random three-factor model. 

Variable dependent: Y  

FV GL ECM: In this column the 

CVs are selected, according 

to the type of factors 

ECM: In this column the 

coefficients are replaced by their 

actual values. 

Block . (r-1)=2 The block test is not valid (because designs using blocks are not 

randomized). Testing blocks is not scientifically interesting. 

Treat                  (t-1)=39 No NDEs are reported for treatments, because they are already 

considered in the breakdown of their main effects and 

interactions. 

Factor I (a-1)=3                              

 
2 + rbc 

2
i + rc 

2
ij + rb 

2
ik +r


2
ijk  

  

 
2 +30 

2
i +15 

2
ij +6 

2
ik +3


2
ijk  

Factor j (b-1) =1 

    

                            

 
2 + rac 

2
j + rc 

2
ij + ra 

2
jk + r


2
ijk  

 

 
2 +60 

2
j +15 

2
ij +12 

2
jk + 

3
2
ijk  

Int: () ij (a-1)(b-1)=3               

 
2 + rc 

2
ij + r

2
ijk  

 

 
2 +15 

2
ij + 3

2
ijk  

Factor: k (c-1)=4                              

 
2 + rab 

2
k + rb 

2
ik + ra 

2
jk + r


2
ijk  

 

 
2 +24 

2
k +6 

2
ik +12 

2
jk +3


2
ijk  

Int: 

() ik 

(a-1)(c-

1)=12 

             

 
2 + rb 

2
ik + r

2
ijk                 

 

 
2 + 6 

2
ik +3

2
ijk  

Int: 

( ) jk   

(b-1)(c-1)=4                

 
2 + ra 

2
jk +r

2
ijk            

 

 
2 + 12 

2
jk +3

2
ijk  

Int: 

() ijk 

(a-1) (b-1) 

(c-1) =12 

        

 
2 + r

2
ijk          

 

 
2 + 3

2
ijk  

Mistake: 

    k( ij ) 

(r-1)(abc-

1)=78 

   

 
2     

  

 
2  

 Total:Y ijk     

Source: Own elaboration. 

Since all principal factors are random, so are the interactions. However, it is worth 

remembering that the variation factors can be fixed or random. Note that the corresponding 

notation is located in the following parts: 

a) Above and below each term of the corresponding model. 

b) In the part where the symbolic and real levels are defined. 

c) In the FV column, in the AdeV table. 

With this practice, the researcher in training remembers or constantly keeps in mind 

which factors are fixed and which factors are random, which greatly facilitates the 
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management of the subscripts to determine which CVs remain or do not remain in the ECM 

column, to know which hypothesis to reject and which hypothesis not to reject. 

Both in the model and of course in the AdeV table, the term blocks appears (because the 

model by construction includes the term blocks). When the characteristics of the research do 

not require the use of blocks, this means that the researcher is almost certainly using a CaA 

design. 

In the present example, since all factors are random, they all remain, they do not 

disappear. Significance tests for the FVs that can or cannot be done are determined with an 

appropriate NDE relationship. 

 

Significance test for variation factor i : 

 

Ho: 
2
i = 0             VS             H1:

2
i  0 

 

                                                                             

            (ECM) + (ECM)         
2

+ rbc 
2
i + rc 

2
ij + rb 

2
ik +r 

2
ijk +  

2
+r

2
ijk  

Fc = ------------------------ = ------------------------------------------------------- = rb 
2

                                                                                                                       

(       (ECM) + (ECM)         
2 + rc 

2
ij + r 

2
ijk +  

2
+ rb 

2
ik + r

2
ijk  

                                                                       

 

                                                                                  

           (ECM) + (ECM)         
2

+ rbc 
2
i + rc 

2
ij + rb 

2
ik +r 

2
ijk +  

2
+r

2
ijk  

Fc = ------------------------ = ------------------------------------------------------- = rb 
2                                                                                                       

(        (ECM) + (ECM)        
2 + rc

2
ij  + rb 

2
ik +

2
ijk  +  

2
+ r

2
ijk  

                                                                              

 

                                                                           

          (ECM) + (ECM)      
2

+ 3 0 
2
i + 15 

2
ij + 6 

2
ik + 3 

2
ijk +  

2
+ 3

2
ijk  

Fc = ---------------------- = ---------------------------------------------------------- =30
2
i                         

        (ECM) + (ECM)     
2 + 15

2
ij  + 6 

2
ik +

2
ijk  +  

2
+ 3

2
ijk  

                                                                       

 

       Fc = 30
2
i                                                                                           

 

With the above, the following was done (didactically): 

1. In the first significance test, the CV coefficients were symbolically placed in the 

numerator and denominator. 
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2. In the second, the CVs are rearranged in such a way that they correspond: each 

of the CVs of the numerator with each of the CVs of the denominator, leaving 

the term to be tested alone or isolated: 30 
2
i = 30

2
i            

3. In the third, the coefficients have been replaced by their real values, leaving the 

term to be tested alone or isolated: 30 
2
i The simplification is precisely 30 

2
i . 

The value Fc , is obtained by multiplying 30 by the value of the variance 
2
i . 

 

On the other hand: F F (3+12, 3+12 and ) = F (15, 15, 0.5) = 2.41 

 

Finally, the F value of the tables (2.41) is compared with the value of Fc (30 
2
i ). 

 

Significance test for the variation factor k : 
 

H o :  
2 = 0         VS           H 1 :  

2  0 

                         
 

                                                                                           

       (ECM) + (ECM)          
2

+ rab 
2
k + rb 

2
ik + ra 

2
jk + r 

2
ijk +  

2
+r

2
ijk  

Fc = ------------------------- = ----------------------------------------------------------- = 24
2
k                                                                                            

       (ECM) + (ECM)       
2

+ rb 
2
ik + r 

2
ijk +  

2 + ra 
2
jk + r

2
ijk              

                                                                             
 

As in the previous case: Fc . ~ F tables (4+12, 12+4, =F (16, 16, 0.05) = 2.33 

Finally, the F value of tables (2.33) is compared with the Fc value 

 

Second example: Suppose (as in example 1, the following three-factor model: i , j , k  

with 4, 2 and 5 levels respectively, in a BaA design, with 3 blocks; but now, with a fixed 

factor i and two random factors j and k . 

 

i = 1, 2…a = 4 levels of factor i : (fixed) 

j = 1, 2…b = 2 levels of factor j : (random)  

k = 1, 2....c = 5 levels of factor k : (random)             

l = 1, 2….r = 3 repetitions. i : (random)           

i, j, k, l: symbolic 

subscripts. 

a, b, c, r: real subscripts 
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Figure 2. Representation of the three-factor model. 
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Source: Own elaboration. 

                                     

  

Table 14. The AdeV of Model 6 
 

   F TO TO T

O 

TO TO TO TO  

Model                

Yijk  = + l + i + j + ()ij + k+ ()ik +    
()jk + ()ijk + k( ij ) (6) 

   
2
i  

2
j  

2
ij  

2
k  

2
ik  

2
jk  

2
ijk   

2   

Source: Own elaboration 
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Table 15. For the fixed three-factor model and two random ones. 

Variable Dependent: Y  

FV GL ECM: In this column the CVs are 

selected, according to the type of 

factors 

ECM: In this column the 

coefficients are replaced 

by their actual values. 
Blocks: 

      j                             
 

(r-1) = 2 

The block test is not valid (because designs that use blocks are not 

randomized). Testing blocks is not scientifically interesting . 

   Treat                   

(t-1) = 39 

No NDEs are reported for treatments, because they are already 

considered in the breakdown of their main effects and interactions. 

Factor: 

 j 

 

(a-1) = 3 

                                          

 
2 + rbc 

2
i + rc 

2
ij + rb 

2
ik + r


2
ijk  

  

 
2 +30 

2
i +15 

2
ij +6 

2
ik

+3
2
ijk  

Factor: 

j 

 

(b-1) = 1 

                              

 
2 + rac 

2
j + ra 

2
jk + r

2
ijk   

 

 
2 + 60 

2
j + 12 

2
jk + 

3
2
ijk  

Int: 

( ) ij 

(a-1) (b-1) = 3                         

 
2 + rc 

2
ij + r

2
ijk   

 
2 +15 

2
ij + 3

2
ijk  

 

Factor: 

k 

 

(c-1) = 4 

               

  
2 + rab 

2
k + ra

2
jk   

 

 
2 + 24 

2
k + 12

2
jk  

Int: 

( ) ik 

(a-1) (c-1)=12                       

 
2 + rb 

2
ik + r

2
ijk                

 

 
2 + 6 

2
ik + 3

2
ijk  

Int: 

() jk 

 
(b-1) (c-1) = 4 

          

 
2 + ra

2
jk        

 

 
2 + 12

2
jk   

Int: 

( ) ijk 

(a-1)(b-1)(c-

1) 

=12 

               

 
2 + r

2
ijk       

 

 
2 + 3

2
ijk  

Error:  

k( ij ) 

(r-1)(abc-

1)=78 
       

2    
2   

Total:Yijk rabc-1=119   

Source: Own elaboration. 

 

The hypothesis test for CV 
2
i , variation factor i is expressed as follows: 

 

H o : 
2
i = 0          VS           H 1 : 

2
i  0 

 

                                         (ECM) + (ECM) 

                          Fc = ------------------------------- = 30
2
i                                                

                                      (ECM) + (ECM) 
            

Similar to the previous case, you can check it. 
 

Hypothesis test for factor k is expressed as follows: 
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                                           (ECM)            
2

+ rab 
2
k + ra

2
jk  

 Fc = ---------- = ---------------------------------- = rab 
2
k                    

                                           (ECM)       
2

+ ra
2
jk  

 

                                          

             (ECM)              
2

+ 24 
2
k + 12

2
jk  

 Fc = ---------- = ----------------------------------- = 24
2
k                      

                                              (ECM)        
2

+ 12
2
jk  

 

                                             
2
k  F (4, 4, 0.05) = 6.39 

 

The approximate test is performed by comparing Fc , with the f value from tables (6.39) 

 

Third example : With a mixed (random) four-factor model. Three crossed factors: i , j , 

l and a fourth: k : hierarchical (nested in i , j ), with 3 blocks. Of the four factors we will 

assume fixed (F): i , l and random (A): j and k . 

 

Table 16. The AdeV of Model 7 

 

      F A A A F F A A A A  

Mod                              11      

(7) 

Yijk =  + m +   i +   j + ()ij+ k(ij) +  l +   ()il +  ()jl +  ()ijl+ ()k(ij)l+  m(ijkl) 
 

   
2
i  

2
j   

2
ij  

2
)(ijk  

2
l     

2
il   

2
jl    

2
ijl   

2
)( lijk  

2
)(, ijklm
  

Source: Own elaboration 

 

i = 1, 2… a i : Fixed and crossed with j and l 

j = 1, 2… b j : Random and crossed with i and l 

k = 1, 2.... c k( ij ) : Random and nested in i , j         

l = 1, 2 …d l : Fixed and crossed with i , j , k( ij ) 

m = 1, 2... r m : Repetitions      

 

i, j, k, l, m: symbolic subscripts. 

  

a, b, c, r: real subscripts 
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Figure 3. Representation of the four-factor model. 
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Source: Own elaboration 

  

      

Table 17. For the random mixed four-factor model . 

Variable Dependent: Y  

FV GL ECM 

Block                          r-1= 2 Invalid test 

Random. 

Factor i 

   

a-1 = 3 

                                        

 
2 + bcdr 

2
i + cdr 

2
ij + dr

2
)(ijk    

Random. 

Factor  j 

b-1 = 1                               

 
2 + acdr

2
j  + dr

2
)(ijk   

Random. 

Int. () ij 

(a-1) (b-1) = 3                              

 
2 + cdr

2
ij    + dr

2
)(ijk     

Random. 

k( ij ) 

(c-1) ab = 32                        

 
2 + dr

2
)(ijk  

Fixed 

l 

d-1 = 2                            

 
2 + abcr

2
l  + bcr

2
jl  

Fixed 

( ) the  

(a-1(d-1) = 6                            (11) 

  
2 + bcr 

2
il + cr 

2
ijl + r

2
)( lijk   

Random. 

( ) jl 

(b-1) (d-1) = 2            (11) 

 
2 + bcr 

2
jl + r

2
)( lijk  

Random. 

() ijl  

(a-1) (b-1) (d-1) = 

6 

           (11) 

  
2 + cr

2
ijl     + r

2
)( lijk  

Random. 

() k( ij )l 

(c-1) ab(d-1) = 64     11 

  
2 + r

2
)( lijk  

Mistake By diff . = 226       
2    

Total Ijklm-1 = 359  

Source: Own elaboration 
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In Model 7 and the AdeV table, an EdeR should have been included after the term 

blocks. This was not done in order to pay more attention to the construction of the Expected 

Values (EV) in the ECM column. The interested reader can do it as an exercise to verify that 

the hypothesis test on blocks is not possible, and that it is not of scientific interest. 

In model (7), some interactions were not included and certainly not in the AdeV table, 

for example: ( ) k( ij ) , because it is a nested factor in i as is the term : k( ij ) and also 

because the combinations of subscribers of these terms already exist in said term. For the 

same reason, the interactions : ( ) jk , ( ) k( ij ) , ( ) k( ij )l , ( ) k( ij )l , ( ) k( ij )l , are 

not included, which is seen more clearly in the graph. The procedure to determine which CVs 

remain (according to rule 4) is explained below, in particular for the nested terms . 

So far, reference has been made to fixed, random and mixed factors and to balanced 

complete designs and models. In model (7), Table 17 and in general in many models that are 

presented in real life according to the phenomenon being studied, to estimate CV, two other 

very interesting cases are presented : 

Case 1: Nested factors (also called hierarchical) 

Case 2: Cross factors. 

Nested factors: For example k( ij ) . This means that the k levels are nested within i, j. 

Each level of k is combined with a single level of i and with a single level of j. In balanced 

nested models , all the levels of the nested factor correspond to the levels of the factor in 

which it is nested. 

Nested factors are expressed using parentheses . Subscripts outside the parentheses are 

those nested within subscripts inside the parentheses. For example: 

a) In the completely randomized design model, the random error j(i) is nested in the 

treatments factor. 

b) In a model with two study factors without interaction, the random error is nested in 

both terms . 

c) In the model with two study or variation factors, one of which (any one) is nested in 

the other, it is written like this: j(i ) and the random error is nested in both: k( ij )  
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Figure 4. Nested factors 

 

 

 
 

 

 

 

 

 

Source: Own elaboration 

 

And so on. However, in practice, errors are usually written like this; ij , ijk , which 

does not indicate that the errors are nested. With nested factors there is no interaction. 

On the other hand, crossed factors occur in combination with each level of another 

factor, that is, when each level of a factor is tested at each level of another factor. It has the 

characteristic of crossing a factor with levels of another factor; unlike nested factors, the 

levels of all the factors cross each other. Remember that the factors are independent variables. 

Every researcher should keep in mind that crossed factors are those in which each of 

the subscribers of one factor is combined with each of the subscribers of the other factor (all 

with all). In crossed models, the number of repetitions must be the same for each of the 

combinations of levels (the treatments). 

 

Discussion 

Statistical models are a set of procedures that allow us to learn from quantitative data 

in a reliable manner and draw conclusions about them in a reasonable or doubtful manner. It 

is a mathematical relationship between random and non-random variables. 

Furthermore, it is important to identify that in complete models all research units 

(experimental units), (investigations via experiment), the same number is maintained until 

the end of the research. And, that balanced models are those in which all treatments or 

combinations of treatments are repeated the same number of times. 

It is emphasized that if, due to fortuitous circumstances, the model in question is not 

complete and balanced, it is an incomplete and unbalanced model. To avoid this situation, 
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the researcher must take extreme care in planning and managing or conducting the research 

project. 

Incomplete and unbalanced models are frequently found in observational studies or 

projects. Models of this type can occur consistently in social sciences such as sociology, 

psychology, anthropology, economics, and also in medicine, mainly in retrospective research 

studies or projects. 

Observational models have no experimental basis and can be managed with 

regression models. The experimental statistical design corresponds to a linear model that 

contains effects and a random error nested within the rest of the effects. 

More than a research article, it is a didactic text for improving the use and application 

of ECM, which is rarely written about. As Restrepo (2007) rightly says, “When carrying out 

a variance analysis, the type of factor or factors involved in the experimental classification 

design must be taken into account, in order to generate the appropriate ECM, and thus reach 

coherent conclusions in the analysis of the information” (p. 201) . 

 

By way of conclusion 

Some recommendations and rules to obtain the ECM, in relation to rule 4, which 

determines the CVs that remain and those that do not remain in the corresponding row, in 

relation to the nested factors, it is emphasized that it is important to start from the model, 

manipulating the corresponding symbolic and real subscribers or subscripts. Likewise, it is 

convenient to list the terms of the model. For each Source of Variation, select the CVs that 

contain at least one subscriber equal to said factor; determine by manipulating subscribers , 

the coefficients of each selected CV, one of which is always r, except for  
2 and determine 

the subscribers that remain and those that disappear how? Of two or more subscribers, the 

subscriber(s) equal to that of the factor in question is ignored . Of the subscribers that remain, 

if they are fixed, the CV disappears . If they are random, the CV remains, does not disappear 

. Furthermore, by the alternative rule, the CV whose subscribers exactly match those of the 

FV remains in the queue (whether fixed or random). 

If any factor is nested in one or more factors (Example 4), proceed as upon in table 17 of 

the AdeV, model 7, which is in the Variation Factor k( ij ) , and that we are analyzing term 11 

of the model: ( ) k( ij )l , whose CV is
2

)( lijk  to see if it stays or not . We proceed by ignoring 

the subscribers ij (inside the parentheses) it is considered as 
2
kl k being a nested factor , the 
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following is said: as we are in row k, of the subscribers kl, I ignore k and we are left with 1. 

As 1 is fixed, CV 11 disappears from the row considered. 

It is also important to assume in the AdeV table that we are in the FV : ( ) k( ij )l and that 

we are analyzing term 11 of the model ( ) k( ij )l , to see if its CV, 
2

)( lijk , stays or does not 

stay . It is considered again, as 
2
kl ; that is, the subscribers i, j (inside the parentheses) are 

ignored, and we say the following: since we are in row l (ele), of the subscribers kl, I ignore 

1 and we are left with k. Since k is random, the CV 11: 
2

)( lijk stays, does not disappear. 

Furthermore, by alternative rule, since the subscribers considered coincide, the CV 
2

)( lijk , 

does not disappear (whether fixed or random). 

For the FV ( ) il (the term of the model), whose CV is 
2
il , because of the coincidence 

of subscribers (by the alternative rule) said CV remains. The terms and 11 remain because 

j and k, are random. The terms and the model: ( ) jl and ( ) ijl respectively, is the 

same case of the FV ( ) il ( model term ) and so on. 

 

Future lines of research 

 Using the experimental design chosen by the researcher leads to obtaining the ECM, 

which is also necessary in the analysis of variance. The ECM is a topic that can be learned 

in statistics or quantitative research courses, but it should be noted that there is little literature 

on the subject, especially in Spanish; therefore, writing and socializing on the subject 

represents an opportunity to enhance and facilitate its use in support of experimental 

researchers who seek to learn about the ECM to determine statistical tests and be able to 

decide whether to accept or reject the hypothesis of interest. 
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