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Resumen 

Actualmente, la mayoría de investigaciones acerca del problema de balaceo de líneas de 

ensamble consideran que los tiempos de las tareas son determinados. Sin embargo, en los 

procesos de fabricación siempre existe la posibilidad de obtener en los procesos variaciones 

que impactan en los tiempos de las tareas. Por eso, en el presente trabajo, con base en un 

enfoque estocástico, se presenta un método que utiliza técnicas metaheurísticas mediante un 

algoritmo genético, el cual tiene como objetivo brindar una solución al problema de 

balanceo tipo 1 de líneas en forma de U con tiempos de tarea estocásticos. Para ello, se han 

tomado como referencia problemas existentes en la literatura para luego ofrecer una 

comparación entre las soluciones existentes. En el proceso de validación se utilizaron siete 

categorías de problemas resueltos por otro método. La solución brindada por el algoritmo 

se sometió a un análisis experimental de los datos para comprobar si era capaz de dar una o 

más soluciones mejores a las existentes; de ese modo, se buscó balancear la línea con la 

menor cantidad de recursos humanos posible. Los datos muestran mejores soluciones para 

los problemas de alta varianza únicamente en el resultado WS mayor, donde se observa una 

diferencia del 4 %; en los demás hallazgos los porcentajes son mejores. Además, se 

encontraron seis soluciones mejores a las existentes. 

Palabras clave: técnicas metaheurísticas, solución al problema de balanceo, líneas en 

forma de U, estocásticos, validación. 

 

Abstract 

Currently, most of the research on the assembly line balancing problem considers that the 

task times are determined. However, in manufacturing processes there is always the 

possibility of obtaining variations in the processes, these variations lead to variations in the 

task times, which leads to address this type of problem from a stochastic approach. This 

paper presents a method that uses metaheuristic techniques, through a genetic algorithm 

which aims to solve the problem of balancing type 1 of U-shaped lines with stochastic task 

times using existing problems in the literature and then make a comparison between the 

existing solutions. 

Seven categories of problems solved by another method were used for the validation 

process. The solution provided by the algorithm was subjected to an experimental analysis 

of the data to check if it is capable of providing one or more solutions that are better than 
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the existing ones, seeking to balance the line with the least amount of human resources 

possible. The results show better solutions for the high variance problems, only for the WS 

Major result a difference of 4% is observed, but in the remaining results the percentages are 

better. It can be observed that 6 better solutions were found than the existing ones. 

Keywords: metaheuristic techniques, solution to the balancing problem, U-shaped lines, 

stochastics, validation. 

 

Resumo 

Atualmente, a maioria das pesquisas sobre o problema de balanceamento de linha de 

montagem considera que os tempos das tarefas são determinados. Porém, em processos de 

fabricação sempre existe a possibilidade de se obter variações nos processos que impactam 

os tempos das tarefas. Por esse motivo, no presente trabalho, baseado em uma abordagem 

estocástica, é apresentado um método que utiliza técnicas metaheurísticas por meio de um 

algoritmo genético, que visa fornecer uma solução para o problema de balanceamento tipo 

1 de linhas em forma de U com tempos de tarefas estocásticas . Para isso, foram tomados 

como referência problemas existentes na literatura para posteriormente oferecer uma 

comparação entre as soluções existentes. No processo de validação, foram utilizadas sete 

categorias de problemas resolvidos por outro método. A solução fornecida pelo algoritmo 

foi submetida a uma análise experimental dos dados para verificar se era capaz de dar uma 

ou mais soluções melhores que as existentes; Desta forma, buscou-se equilibrar a linha com 

a menor quantidade de recursos humanos possível. Os dados mostram melhores soluções 

para problemas de alta variância apenas no maior resultado de WS, onde se observa uma 

diferença de 4%; nos demais achados as porcentagens são melhores. Além disso, foram 

encontradas seis soluções melhores que as existentes. 

Palavras-chave: técnicas metaheurísticas, solução do problema de balanceamento, linhas 

em forma de U, estocástica, validação. 
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Introduction 

In industrial production processes there are countless operations carried out directly 

by the human being, each of which must be balanced according to the different needs of the 

production process, hence it is important to have an adequate balancing of lines to meet the 

estimated demands of the product. In this regard, Orejuela and Flórez (2019) highlight that 

the first designs of assembly lines were developed to obtain efficiency and eliminate 

production costs in operations that commonly work against inventories. For this reason, 

research has been carried out to create optimal methods of assigning tasks in the stations of 

an assembly line, which are called the assembly line balancing problem (ALBP). 

Assembly lines can be linear and U-type; the latter offer improved productivity and 

quality, which is why they are considered one of the best for implementing just-in-time 

(JIT) systems. Although there is a growing interest in the literature to arrange straight or 

linear assembly lines as U-shaped lines to improve performance, literature works are still 

limited. The U-type Assembly Line Balancing Problem (UALBP) is an extension of the 

Straight Line Balancing Problem (SALBP), in which tasks can be assigned from both sides 

of the precedence diagram (Baykasoğlu & Özbakır, 2006). ). 

Line balancing problems are divided into two types: type 1 and type 2. In the first, 

the cycle time is already known, so tasks are assigned to work stations to minimize the 

number of stations. In problem type 2, the aim is to reduce the cycle time when the number 

of stations is fixed. 

Heuristic and metaheuristic techniques have allowed the development of solution 

methodologies for assembly line balancing problems that cannot be addressed with 

conventional methods. For example, Gallego et al. (2015) mention that metaheuristic 

techniques are very useful to solve optimization problems, which cannot be solved by other 

types of techniques. 

Metaheuristics operate by means of algorithms that are not common order, but 

special because, basically, they are not governed by a predictive, causal, or organized 

pattern, but random. This algorithm acquires its optimal form through roaming or trials that 

approximate the solution. “The best known algorithms in metaheuristics are genetic 

algorithms, tabu search, ant colony algorithm (ACO), simulated annealing, particle swarm 

optimization (PSO)” (Maldonado, 2016, p. 173).  

Genetic algorithms were originally developed by J. Holland. They have the ability 

to learn, which is the most determining feature in the evolution of any living system or that 
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exhibits life. This search technique uses a population of solutions that are independently 

manipulated (Maldonado, 2016). 

Currently, in most ALBP studies, determined parameters are considered. However, 

in actual manufacturing processes there is always uncertainty, as there may be variations in 

manual and machine operating times. Therefore, to minimize the negative effects of all 

these unexpected problems, stochastic theory has been applied in the SALBP and UALBP 

(Zhang et al., 2018). 

Now, although in recent years different authors have proposed methodologies to 

solve the ALBP, the present investigation is developed within the stochastic approach in 

the balancing of U-shaped lines type 1. Genetic algorithms, being more efficient methods, 

allow us to provide more options for possible solutions to the problem of stochastic 

balancing of U-shaped lines type 1. In this sense, Martínez (2015) developed and published 

a new algorithm that uses metaheuristic techniques through genetic algorithms with 

heuristic rules, which can help to solve ALBP and UALBP, since they provide one or more 

good solutions, and in some cases optimal, to apply to any process. 

To solve the stochastic UALBP type 1, the algorithm is adapted by incorporating 

equations to calculate the probabilities that the times in the workstations exceed the cycle 

times. The performance of the algorithm is evaluated and compared with existing solutions 

in the literature of Adil Baykasoğlu y Lale Özbakır (2006) “Stochastic U-line balancing 

using genetic algorithms” (p. 139). 

 

Methods and materials 

Genetic algorithm 

To Cortez (2004) A computational process, also called an algorithmic process or 

algorithm, is fundamental to computer science, since a computer cannot execute a problem 

that does not have an algorithmic solution. Evaluating the efficiency of algorithms, 

therefore, has a lot to do with assessing their complexity. In this sense, the theory of 

computational complexity is the part of the theory of computation that studies the resources 

required during computation to solve a problem. The resources commonly studied are time 

(number of execution steps of an algorithm to solve a problem) and space (amount of 

memory used to solve a problem). An algorithm that solves a problem, but takes a long 

time to do so, will hardly be of any use. 
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Genetic algorithms are part of the so-called evolutionary techniques, originally 

proposed in the 1950s, which have a common basic structure: they reproduce, carry out 

random variations, promote competition, and execute the selection of individuals from a 

given population. Whenever these four processes are present, whether in nature or in a 

computer simulation, evolution is the byproduct. 

In computer simulations —according to Gallego et al. (2015)— genetic algorithms, 

like other evolutionary techniques, simulate a process of natural selection to obtain the 

solution of optimization problems. In this case, the problem to be solved plays the role of 

the environment and each individual in the population is associated with a candidate 

solution. In this way, an individual will be more adapted to the environment whenever it 

corresponds to a more effective solution to the problem. 

Evolutionary computing has the advantage of being able to solve problems through 

simple mathematical descriptions. "In this way, evolutionary computation must be 

understood as a set of generic and adaptable techniques and procedures, to be applied in 

solving complex problems, for which other known techniques are ineffective or not 

applicable" (Gallego et al., 2015, p.6). 

Evolutionary algorithms are techniques based on a population of individuals, which 

are in constant communication and sharing information through reproduction and mutation 

operators. The population is made up of several individuals, which are generally 

represented by a binary string called a chromosome, where each bit of this string is known 

as a gene. (Esparza, 2009). 

 

Modified direct coding algorithm to solve the type 1 stochastic UALBP 

In direct coding, the genetic algorithm is fed with the specific data of each problem. 

Balancing problems have a number of tasks, task times, restrictions and precedence of 

these, as well as a given cycle time. In the direct coding algorithm, each gene represents a 

task, that is, the number of genes is equivalent to the number of tasks. The previously 

mentioned data is introduced to the algorithm and it will generate an initial population; then 

the search for an ideal chromosome (one that generates an optimal number of workstations) 

begins. If no such chromosome is found, new populations are generated using breeding, 

crossing, and mutation genetic operations. (Martínez, 2015). 
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Coding 

As Martínez (2015) comments, the first step to build a genetic algorithm is to define 

a genetic representation called coding. Thus, each task is numbered sequentially in the 

order in which it will be assigned to the workstations, and each chromosome gene contains 

the task number it represents (Martínez, 2015). 

The chromosome is symbolized by a line graph or isomorphic diagram, so called in 

graph theory. The isomorphic diagram contains the same precedence configuration as the 

original diagram, ie the isomorphic diagram is equivalent to the precedence diagram. This 

is used to build a chromosome. 

The method used to construct a valid random sequence of genes on the chromosome 

(isomorphic diagram) is as follows: 

Step 1: Generate an empty chromosome with a number of genes equal to the 

number of tasks. 

Step 2: Select a task set that does not have precedence. 

Step 3: Select an available task at random and add it to the chromosome. 

Step 4: Remove the selected task from the task set without precedence. 

Step 5: Add all immediate successor tasks to the aggregated task, as long as all of its 

predecessors are already on the chromosome. 

Step 6: If there are still unassigned tasks, go back to step 3; otherwise, terminate the 

chromosome. 

Figures 1 and 2 show the precedence diagram and the isomorphic representation, 

respectively, for the Mertens problem. 

 

Figure 1. Mertens problem seven tasks precedence diagram  

 
Source: Scholl (1993) 
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Figure 2. Mertens problem isomorphic representation  

 

 
Source: Own elaboration 

 

Initial population 

The initial population of chromosomes is generated randomly, and the number of 

chromosomes to use is defined by the user. Many of the possible gene combinations are 

irrelevant because they violate precedence constraints. To generate the initial population, 

the isomorphic diagram construction method is used. Thus, it is guaranteed that the 

generated chromosomes maintain a valid sequence of genes. Table 1 shows a chromosome 

for the Mertens problem. 

 

Table 1. Mertens problem chromosome 

Chromosome 
Genes 

1 4 7 2 3 5 6 

Source: Own elaboration 

Since each chromosome is represented by an isomorphic diagram, this can be used 

to graphically show how the U-shaped line would be represented once the problem has 

been solved. Figure 3 shows the U-shaped graphical representation for the Mertens 

problem. 

 

Figure 3. Mertens problema U-shaped graphical representation 

 

Source: Own elaboration 
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Decoding 

Chromosomes are generated in such a way that the sequence does not violate 

precedence constraints, which allows tasks to be assigned multiple workstations instead of 

one (Martínez, 2015). The decoding process refers to the procedure by which the 

chromosome genes (tasks) are assigned to the workstations and the way in which they are 

generated. 

When this process ends, a solution is obtained, which shows a fitness index (number 

of workstations), a smoothness index and a computational time. 

The following notations used by Baykasoğlu and Özbakır (2006) are used for the 

development of the algorithm. 

N number of tasks 

T  Cycle time 

µi(Tj)   Average processing time of task i 

σi  Standard deviation of the processing time of task i 

Pk  Probability that the station time exceeds the cycle time 

Zk  Random variable with mean of 0 and standard deviation of 1 

F(Zk)  Accumulated value of the Zk function 

α  Upper limit of the probability that the station time exceeds the cycle time 

Kα  α quantile of the standard normal distribution 

σi²  Variance of the processing time of task i 

The method used to decode the chromosome is described below: 

1. Create an empty workstation. 

2. 2. Select the start and end tasks, and assign one of them to the first workstation. 

3. 3. Calculate the probability that the station time exceeds the cycle time using 

equations 1 and 2 (Baykasoğlu y Özbakır, 2006). 

 𝑃𝑘 = 1 − 𝐹(𝑍𝑘) (1) 

 Z𝑘 =
(T−Σµ𝑖) 

√Σσ𝑖²
 (2) 

4. If the probability that the station time exceeds the cycle time is less than the value of 

α, the assignment of tasks to the station continues. 

5. If the probability that the station time exceeds the cycle time is greater than the 

value of α, the next station is opened and the assignment of tasks continues. 
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6. The leftmost tasks are added if their ancestors are already on the chromosome, and 

the rightmost tasks are added if their successors have already been assigned. 

7.  Go back to step 3, and repeat the process until you finish the assignment of tasks; 

then finish the process. 

 

Variance Generation 

 The literature on the stochastic U-shaped line balancing problem is very limited. 

Although the methodologies that have been proposed show the development of the method 

to arrive at the solution, they do not teach specific values for the mean and the variance of 

the tasks. In this sense, Armin Scholl (1993) proposed a set of problems, which have been 

used by different authors in solutions to the line balancing problem; however, it is difficult 

to find problems in the literature that show the specific values for the variance of the tasks; 

consequently, it was necessary to develop a method and combine it with the Carraway 

approach used by Urban and Chiang (2006) for the generation of such variances. 

The variance is randomly generated using part of the Carraway approach. In this, random 

variance values are generated in two intervals [0, (Ti/4)²] for low variance and [0, (Ti/2)²] 

for high variance and using the minimum cycle times to generate a range of random values. 

The Mertens problem is used to show the procedure. Table 2 shows the mean tasks time for 

this problem. 

 

Table 2. Mertens (1967) problem mean tasks time 

Task Mean tasks time 

1 1 

2 5 

3 4 

4 3 

5 5 

6 6 

7 5 

Cycle time 8 

Source: Own elaboration 

1. The maximum values of Zk were determined as 1.28, 1.645, and 1.96 (Urban and 

Chiang 2006). Using equation 2, the following equations can be developed and a 

maximum value of the variance determined for each task. 
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 σ𝑖 =
(C−µ𝑖) 

Z𝑘
 (3)  

  

  σ𝑖² = [
(C−µ𝑖) 

Z𝑘
]² (4) 

 

2. Calculation of variance task 1. 

 
 

 σ𝑖 =
(8 − 1) 

1.96
= 3.571, σ𝑖 =

(8 − 1) 

1.645
= 4.255, σ𝑖 =

(8 − 1) 

1.28
= 5.469 

 
           σ𝑖2 = 12.755                           σ𝑖2 = 18.105                          σ𝑖2 = 29.909 

 

It is observed that the smallest variance calculated is for the Zk value of 1.96. This 

is the value that is selected as the maximum variance for this task. Also, it is used as the 

maximum value for the range of random values for the variance of this task. This is 

selected because any larger value of variance would not generate any solution, that is, there 

is no way to assign the task (in this case, 1 to some workstation9, since a larger variance 

would exceed the probability that the The station time exceeds the cycle time.The same 

procedure is carried out for the missing tasks. Then, in the results table 3, the Carraway 

approach for the selection of the interval of the variance is included. 

 

Table 3. Calculated variance results 

Task 

Carraway 

variance 

range 

Standar deviation (σ) for Zk 

values 
Variance (σ²) 

[0,(Tj/4)²] Z=1.96 Z=1.645 Z=1.28 σ² Calculated σ² Random 

1 0.0625 3.571 4.255 5.469 12.755 0.017 

2 1.5625 1.531 1.824 2.344 2.343 0.165 

3 1 2.041 2.432 3.125 4.165 0.257 

4 0.5625 2.551 3.040 3.906 6.508 0.541 

5 1.5625 1.531 1.824 2.344 2.343 0.987 

6 2.25 1.020 1.216 1.563 1.041 0.976 

7 1.5625 1.531 1.824 2.344 2.343 1.556 

Source: Own elaboration 

 

3. The values of the columns [0,(Tj/4)²](Carraway variance range) and calculated σ² 

are compared, and the smaller values are selected. In this example, the values in 

column [0,(Tj/4)²] are selected, since they are the smallest for tasks 1, 2, 3, 4, 5 and 
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7; for task 6 the value of the calculated σ² column is selected. Table 4 shows the 

intervals of the variance and the random results for it. 

 

Table 4. Randomized results for variance 
 

Task 
Maximum 

variance values 

Interval 

variance 
σ² Random 

1 0.0625 0 - 0.625 0.017 

2 1.5625 0 - 1.5625 0.165 

3 1 0 - 1 0.257 

4 0.5625 0 - 0.5625 0.541 

5 1.5625 0 - 1.5625 0.987 

6 1.041 0 - 1.041 0.976 

7 1.5625 0 - 1.5625 1.556 
 

Source: Own elaboration 

4. With the randomly generated variance data, Table 5 is created with the mean and 

variance values for the algorithm. 

 

Table 5. Algorithm data 

Task Mean task time Variance 

1 1 0.017 

2 5 0.165 

3 4 0.257 

4 3 0.541 

5 5 0.987 

6 6 0.976 

7 5 1.556 
 

Source: Own elaboration 

Algorithm Development 

The steps for the solution of the generated chromosome are described below: 

1. Place the possible assignable tasks (1,6) to the lock station 1. 

2. Select one of the tasks at random. 

3. Determine the probability that the station time will exceed the cycle time. 

4. If the probability that the station time exceeds the cycle time is less than the value of 

α, the assignment of tasks to station 1 continues. 

5. If the probability that the station time exceeds the cycle time is greater than the 

value of α, station 2 is opened and the assignment of tasks continues. 
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To exemplify the solution process of the algorithm, the chromosome previously 

shown in table 1 and the data from table 5 are used. Table 6 shows the steps for the solution 

of the mentioned chromosome. The proposed cycle time is 10 and the proposed probability 

is 95% (α = 0.05). 

 

Table 6. Chromosome solution 

Probability 95 %, α = 0.05, CT = 10 

Tasks to 

be 

assigned 

Selected 

task 
µ Σµ σ^2 Σσ^2 √Σσ^2 Pk 

Work 

station 

1,6 1 1 1 0.017 0.017 0.130 1-F((10-1)/0.130) = 0 1 

4,6 6 6 7 0.976 0.993 0.996 
1-F((10-7)/0.996) = 

0.001 
1 

4,5 4 3 10 0.541 1.534 1.239 1-F((10-10)/1.239) = 0.5 2 

7,5 5 5 8 0.987 1.528 1.236 
1-F((10-8)/1.236) = 

0.052 
3 

7,3 3 4 9 0.257 1.244 1.115 
1-F((10-9)/1.115) = 

0.184 
4 

7,2 7 5 9 1.556 1.813 1.346 
1-F((10-9)/1.346) = 

0.228 
5 

2 2 5 10 0.165 1.721 1.312 1-F((10-10)/1.312) = 0.5 6 

 

Source: Own elaboration 

• Operation 1 

Calculation of the probability that the time at station 1 exceeds the cycle time using 

equations 1 and 2 with task 1 assigned: 

1-F((10-1)/0.130) 

Z𝑘 =
(10 − 1) 

0.130
 

Zk = 69.23 

P value from Z table: 

F(Zk) = P(x<10) = 1 

Pk = P(x>10) = 1 - P(x<10) = 0 

• Operation 2 

1-F((10-7)/0.996) 

Z𝑘 =
(10 − 7) 

0.996
 

Zk = 3.012 
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P value from Z table: 

F(Zk) = P(x<10) = 0.9987 

Pk = P(x>10) = 1 - P(x<10) = 0.001 

• Operation 3 

1-F((10-7)/0.996) 

Z𝑘 =
(10 − 10) 

1.239
 

Zk = 0 

P value from Z table: 

F(Zk) = P(x<10) = 0.5 

Pk = P(x>10) = 1 - P(x<10) = 0.5 

At the end of operation 3, it is observed that the probability that the time of station 1 

exceeds the cycle time is greater than the value of α; therefore, Season 2 opens. 

The operations for each of the tasks selected to be assigned to the following stations 

are performed in the same way. The solution for this chromosome results in six 

workstations. 

 

Computational solution 

The computational algorithm develops solutions by searching for chromosomes that 

generate feasible solutions through genetic operations. The process involves the following: 

the user defines the initial populations, the most suitable chromosomes are selected to carry 

out the crossover operation, a random selection of chromosomes is made for the mutation 

operation, and the new population is complemented with more suitable chromosomes for be 

conserved and with new chromosomes. This process continues until the established number 

of generations is reached. The block diagram of figure 4 represents the process of the 

algorithm. 
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Figure 4. Algorithm process 

 

 
Source: Own elaboration 

 

Results 

To evaluate the algorithm for the stochastic type 1 U-shaped line balancing 

problem, the set of line balancing problems presented by Armin Scholl (1993) was used, 

which has been used by several authors to test different solution methodologies. to the line 

balancing problem. This set of problems proposes task times, which were considered as the 

mean task time (µi). 

Seven problem categories are used for algorithm evaluation: Mertens (7 tasks), 

Bowman (8 tasks), Jaeschke (9 tasks), Jackson (11 tasks), Mitchell (21 tasks), Heskiaoff 

(28 tasks), and Killbridge. (45 tasks). The problems are evaluated in two ranges of variance 
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(high and low variance), which allows to visualize the impact on the solutions with 

different ranges in the variance of the tasks. Task completion probabilities were set to 0.90, 

0.95, and 0.97 (Kα = 1.28, 1.645, and 1.96, respectively). The combination of these 

categories with their respective cycle times, variance ranges, and different probabilities 

generate a total of 165 problems. These were solved with a 2.3 GHz personal computer. 

Tables 7 and 8 show the results highlighted in bold of the computational development of 

the algorithm and the existing solutions in the literature of Baykasoğlu y Özbakır (2006). 

 

Table 7. Algorithm computational development results for low variance 
 

Low variance 

Problems 
Tasks 

numbers 

Cycle 

time 

K(1-α) = 1.96 Probability 97.5 % K(1-α) = 1.645 Probability 95 % K(1-α) = 1.28 Probability 90 % 
 

 

SI 
Solution 

WS 
CPT SI Solution WS CPT SI 

Solution 

WS 
CPT  

    Existing   Existing     Existing   Existing     Existing   Existing  

Mertens 7 8 1.354 6 5 0.118 0.203 1.354 6 5 0.053 0.281 1.354 6 5 0.049 0.078  

  10 1.414 5 4 0.102 0.17 1.414 5 4 0.053 0.201 2.179 4 4 0.045 0.18  

  15 0.577 3 3 0.11 0.079 0.577 3 3 0.056 0.203 0.577 3 3 0.049 0.22  

    18 0.707 2 2 0.112 0.281 0.057 2 2 0.707 0.155 0.707 2 2 0.043 0.187  

Bowman 8 20 5.082 6 6 0.141 0.172 5.082 6 6 0.045 0.203 2.75 5 5 0.037 0.094  

Jaeschke 9 6 N/S/F 8 N/S 0.172 N/S/F 8 
N/S/

F 
0.203 N/S/F 8 N/S 0.156  

  7 1.541 8 7 0.161 0.157 1.541 8 7 0.113 0.172 1.62 8 7 0.055 0.23  

  8 1.62 8 7 0.058 0.172 1.62 8 7 0.032 0.09 1.927 7 7 0.032 0.171  

  10 2.12 6 5 0.181 0.141 2 5 5 0.152 0.141 2 5 5 0.109 0.13  

    18 0.816 3 3 0.187 0.14 0.816 3 3 0.127 0.11 2.08 3 3 0.057 0.203  

Jackson 11 9 1.414 8 7 0.097 0.17 1.414 8 7 0.055 0.204 1.5 8 7 0.048 0.2  

  10 1.69 7 7 0.151 0.063 1.69 7 7 0.071 0.183 1.69 7 7 0.068 0.172  

  13 1.095 5 5 0.137 0.14 1.414 5 5 0.066 0.204 1.264 5 5 0.066 0.13  

  14 1.264 5 4 0.132 0.188 1.264 5 4 0.073 1.1 0.707 4 4 0.057 0.24  

    21 0.816 3 3 0.126 0.187 0.816 3 3 0.069 0.14 0.816 3 3 0.063 0.157  

Mitchell 21 15 2.774 
1

0 
N/S/F 0.153 N/S/F 1.632 9 N/S/F 0.101 N/S/F 1.563 9 9 0.101 0.297  

  21 1.647 7 6 0.173 0.5 0.707 6 6 0.105 0.843 0.707 6 6 0.103 0.26  

  26 1.183 5 5 0.154 0.34 0 5 5 0.128 0.344 0.183 5 5 0.126 0.234  

  35 1.5 4 4 0.254 0.28 5.408 4 4 0.227 0.21 2.692 4 4 0.167 0.281  

    39 8.139 4 4 0.301 0.21 1.29 3 4 0.225 0.235 1.29 3 3 0.218 0.156  

Heskiaoff 28 205 12.69 6 6 0.138 11.031 14.85 6 6 0.166 3.297 10.23 6 6 0.131 0.343  

  216 12.11 6 6 0.134 1.97 17.34 6 6 0.186 0.1 23.54 6 6 0.171 0.25  
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  256 12.88 5 5 0.311 0.405 18.15 5 5 0.183 0.36 23.75 5 5 0.202 0.328  

  324 18.61 4 4 0.282 0.453 20.84 4 4 0.205 0.25 28.52 4 4 0.216 0.454  

    342 29.77 4 4 0.247 0.328 36.78 4 4 0.197 0.32 65.6 4 4 0.239 0.406  

Killbridge 45 79 6.073 9 9 0.346 0.39 6.904 9 9 0.275 0.39 8.062 9 8 0.289 5.203  

  92 11.34 8 8 0.349 0.594 5.707 7 8 0.353 0.391 5.644 7 7 0.294 1.37  

  110 4.163 6 6 0.395 0.4 5.887 6 6 0.334 0.4 5.228 6 6 0.336 0.594  

  138 9.777 5 5 0.412 0.578 12.17 5 5 0.407 0.2 21.24 5 5 0.42 0.39  

    184 33.79 4 4 0.48 0.391 42.05 4 4 0.437 0.112 47.15 4 4 0.399 0.45  

N/S/F No feasible solution found             
 

Source: Own elaboration 

 

Table 8. Algorithm computational development results for high variance 

 

High variance 

Problems 
Tasks 

numbers 

Cycle  

time 

K(1-α) = 1.96 Probability 97.5 % K(1-α) = 1.645 Probability 95 % K(1-α) = 1.28 Probability 90 % 
 

 

SI 
Solution 

WS 
CPT SI 

Solution  

WS 
CPT SI 

Solution 

WS 
CPT  

    Existing   Existing     Existing   Existing     Existing   Existing  

Mertens 7 8 1.354 6 N/S/F 0.134 N/S/F 1.354 6 N/S/F 0.055 N/S/F 1.354 6 5 0.056 6.172  

  10 1.354 6 5 0.078 0.1 1.354 6 5 0.032 0.18 2.489 5 5 0.031 0.14  

  15 0.577 3 3 0.141 0.13 0.577 3 3 0.071 0.125 0.577 3 3 0.03 0.11  

    18 0.577 3 3 0.149 0.09 0.577 3 3 0.11 0.078 0.707 2 2 0.049 0.075  

Bowman 8 20 6.928 7 6 0.07 7.12 5.016 6 6 0.032 0.171 5.016 6 6 0.108 0.2  

Jaeschke 9 8 1.62 8 7 0.132 0.922 1.62 8 7 0.036 0.531 1.62 8 7 0.033 1.47  

  10 1.927 7 7 0.033 0.125 1.927 7 7 0.071 0.219 2.121 6 7 0.059 0.187  

  18 0.816 3 3 0.152 0.234 0.816 3 3 0.121 0.175 0.816 3 3 0.1 0.3  

Jackson 11 10 1.414 8 N/S/F 0.068 N/S/F 1.581 8 N/S/F 0.024 N/S/F 1.5 8 7 0.027 0.203  

  13 1.732 6 5 0.098 2.04 1.732 6 5 0.074 0.985 1.095 5 5 0.036 1.402  

  14 1.095 5 5 0.068 0.891 1.095 5 5 0.084 0.25 2.236 5 5 0.1 0.772  

    21 0.816 3 3 0.116 0.766 0.816 3 3 0.044 0.187 0.816 3 3 0.035 0.31  

Mitchell 21 21 1.274 8 8 0.08 0.344 1.362 7 7 0.083 0.231 1.647 7 7 0.093 0.516  

  26 2.121 6 6 0.196 0.782 1.957 6 6 0.092 0.344 2.366 5 5 0.092 1.89  

  35 0.866 4 4 0.257 5.468 0.866 4 4 0.173 0.562 0.866 4 4 0.16 0.281  

    39 2.692 4 4 0.269 0.174 6.224 4 4 0.219 0.235 6.576 4 4 0.185 0.344  

Heskiaoff 28 205 17.41 8 8 0.298 0.547 20.37 8 7 0.143 1.641 14.75 7 7 0.101 0.437  

  216 25.95 8 7 0.491 1.976 27.15 7 7 0.135 0.563 23.76 7 6 0.128 5.593  

  256 23.12 6 6 0.2 0.48 18.75 6 6 0.157 0.53 24.06 6 5 0.149 1.453  

  324 19.57 5 5 0.15 0.691 41.19 5 4 0.184 0.328 13.1 4 4 0.114 0.531  

  342 48.67 5 4 0.249 0.531 5.787 4 4 0.192 0.657 11.25 4 4 0.21 0.18  

Killbridge 45 92 10.65 9 8 0.198 0.61 4.769 8 8 0.201 5.547 7.632 8 8 0.172 0.594  

  110 8.115 7 7 0.288 0.609 9.433 7 7 0.214 0.984 21.42 7 6 0.226 4.14  

  138 22.61 6 6 0.313 0.782 4.289 5 6 0.302 0.39 8.148 5 5 0.276 0.797  

    184 11.85 4 4 0.345 0.593 14.35 4 4 0.331 0.781 31.6 4 4 0.302 0.593  

N/S/F: No feasible solution found             
 

Source: Own elaboration 
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At the end of the evaluation process, the algorithm shows the following results: 

• Smoothness index (SI) 

• Number of workstations (WS) 

• Computational time (CPT) 

The smoothness index shows how close the generated chromosome (solution) is to 

achieving equilibrium on the production line. A number closer to zero is better, because the 

smaller this value is, the closer you are to achieving perfect balance. The number of work 

stations indicates the number of work stations that are generated by each chromosome. The 

computational time indicates the time taken by the algorithm to generate the chromosomes 

(time units are shown in nanoseconds). Figure 5 shows an example of the computational 

solution of the algorithm. 

 

Figure 5. Algorithm computational solution 

 
 

Source: Own elaboration 

 

 

Discussion 

From the results obtained, a comparative table is made with the existing solutions of 

Baykasoğlu and Özbakır (2006) for high and low variance, where the quantity and 

percentage for the following results are shown: 

• Ws major. Problems in which one more WS (workstation) was generated. 
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• Similar WS, lower CPT. Problems in which the amount of WS is similar 

with a lower CPT (computational time). 

• Similar WS, higher CPT. Problems in which the amount of WS is similar 

with a higher CPT. 

• WS minor. Issues for which a lower WS number was generated. 

• No feasible solution was found. Problems for which no solution was found. 

• Total problems. Number of problems performed. 

 

Table 9. Comparison results for low and high variance 

 

Low variance 

 

WS 

larger 

WS 

Similar 

smaller 

CPT 

WS 

Similar 

larger 

CPT 

WS 

smaller 

No feasible 

solution 

found 

Overall 

problems 

 18 52 16 1 3 90 

% 20.0 57.8 17.8 1.1 3.3   
       

High variance 

  
WS 

larger 

WS 

Similar 

smaller 

CPT 

WS 

Similar 

larger 

CPT 

WS 

smaller 

No feasible 

solution 

found 

Overall 

problems 

 18 46 5 6 0 75 

% 24.0 61.3 6.7 8.0 0.0   

Source: Own elaboration 

From the analysis of the results, we can affirm that the evaluated algorithm 

provides better solutions for high variance problems, since only for the highest WS result 

is a difference of 4 % observed. On the other hand, in the remaining results the 

percentages are better. In addition, it can be seen that six better solutions were found than 

the existing ones. In this sense, the solutions for some problems show variation for a 

maximum additional task, although in most the number of workstations are similar to the 

existing ones. Regarding the computation times of the solutions, no great difference is 

observed, since most of the times are below 1 second. Table 10 shows the time averages 

for both variances. 
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Table 10. Computational times averages 

Computational times averages 

Variance Algorithm solutions Existing solutions 

Low 0.177 0.522 

High  0.146 0.991 

Source: Own elaboration 

 In short, it can be observed that the average times of the algorithm's solutions are 

better than the existing ones, which shows the algorithm's ability to find solutions in a 

shorter computational time. 

 

Conclusions 

Carrying out this work reaffirmed the effectiveness of computational genetic 

algorithms for solving complex problems, since results similar to those found in the 

literature were found through validation. 

On the other hand, it should be noted that in many cases the balancing of lines is 

carried out based on the experience of the personnel in charge of this task, that is, 

methodologies based on metaheuristics or other tools are not used. An empirical 

balancing, therefore, is not always the most appropriate, since it may imply increases in 

production costs. However, with this new tool based on genetic algorithms, a more 

adequate balancing can be performed on U-shaped lines with stochastic task times. One of 

its most outstanding characteristics is its versatility, since it allows different parameters to 

be varied to obtain a considerable number of solutions. This serves to experiment and 

observe the different aspects that can improve or optimize the operation, with which a 

balance can be achieved with the least amount of human resources possible. 

Likewise, the validation of the algorithm was a very extensive process, since the 

problems carried out were developed with different probability values and variance 

ranges. This was very important because it allowed the algorithm to be subjected to 

different scenarios in order to achieve as even a comparison as possible. 

Finally, it is important to note that the variances of both solutions were randomly 

generated, so it is difficult to conclude that an algorithm provides the best solution to the 

type 1 stochastic U-shaped line balancing problem. realistically, it would be necessary to 

carry out the computational study with equal variances.  
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Future lines of research 

With the results obtained, we have a clearer idea of the solutions that the algorithm 

can show. In fact, as a solution evaluation measure, the algorithm shows the SI 

(smoothness index), although there are also three measures that help to evaluate the 

solution. Future work, therefore, could improve the algorithm and incorporate these three 

measures of solution evaluation: 

1. Balance delay. 

2. Line efficiency. 

3. Balance sheet efficiency. 
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