Pilot Expert System for the diagnosis of the health status of patients with covid-19 based on vital signs
Abstract
This article presents a fuzzy pilot expert system as a complementary alternative measure with the objetive to quickly diagnose the health status of a patient who may have or develop complications associated with Covid-19. For the case of this research, a mixed descriptive methodology was used. In the first instance, an Expert System (ES) was developed to collect information on Covid-19, later, through a semantic network, the knowledge about this disease was visualized so that, from the declaration of knowledge to natural language, define the variables and perform a parameterization process for the creation of the Fuzzy System (FS). For the design of the questionnaire items, a medical specialist was consulted and the instrument was applied through a Google form to a random population of 72 patients who had presented the symptoms of Covid-19. The results obtained by applying the ES showed an efficiency of 86% in the diagnosis made to the population sample, justifying the supposed hypothesis of a diagnosis greater than 80%. It is concluded that since Covid-19 is a pandemic disease with variants and manifestation of multiple symptoms in patients who have acquired it, the generation of new diagnostic methodologies such as the one presented here, allow a rapid diagnosis in the face of the high demand for medical care. This diagnostic modality through an ES, to the extent that feedback continues and is applied to a greater number of patients, will help to detect more efficiently and in time whether or not the patient has Covid-19.
Downloads
This work is licensed under a Creative Commons Attribution 4.0 International License.
In order to promote the development and dissemination of research in education in Latin America, the Ibero-American Journal for Educational Research and Development (RIDE) adhered to the Budapest Open Access Initiative, which is why it is identified as a Open access publication. This means that any user can read the complete text of the articles, print them, download them, copy them, link them, distribute them and use the contents for other purposes. Creative Cummons licenses allow users to specify the rights to use an open access journal available on the Internet in such a way that users know the rules of publication. Authors who publish in this journal accept the following conditions: Authors they keep the author's rights and give the magazine the right of the first publication, with the work registered with the attribution license of Creative Commons, which allows third parties to use the published material whenever they mention the authorship of the work and the first publication in this The authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that The work was published for the first time in this magazine. Authors are allowed and recommended to publish their work. low on the Internet (for example on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and faster dissemination of the published work