Academic Performance, Brain Activity and Repetitive Transcranial Magnetic Stimulation
Abstract
University academic performance depends on the functioning of neurons, and rTMS is a newly emerging tool that modifies neural function. The study aimed to identify the relationship between rTMS and academic average. With informed consent obtained for convenience, rTMS was applied to a group of 6 participants. qEEG was recorded at the end of 10 sessions of 40 minutes, with three-second pulsed trains of stimulation followed by one second of rest, a frequency of 100 Hz, and an intensity of six Gauss, in a resting state with eyes closed, using a 10-centimeter coil on the midline anterior to the midpoint of nasion and vertex. The results showed a Cronbach's alpha of 0.863; the initial academic average in the studied group (8.03) and final (8.55) showed a Student's t of -3.253 and p=0.023; EEG and academic average showed Pearson correlation in: T5HzDB in All Range r= -0.824 with p=0.044, T5HzDB in the Delta range r=-0.825 and p=0.045, and F3HzDB in the Theta frequency r=0.859 and p=0.028. Concluding that the application of rTMS modifies neural function, improving academic average.
Downloads
References
Arreola M. G. y Hernandez C. E. (2021). El rendimiento académico y su relación con algunos factores asociados al aprendizaje en alumnos de educación superior. (1a ed., Vol. 1). Universidad Pedagógica de Durango. http://www.upd.edu.mx/PDF/Libros/RendimientoAcademico.pdf
Bakulin, I. S., Zabirova, A. Kh., Poydasheva, A. G., Lagoda, D. Yu., Suponeva, N. A. y Piradov, M. A. (2023). Safety and tolerability of repetitive transcranial magnetic stimulation: an analysis of over 1200 sessions. Neurology, Neuropsychiatry, Psychosomatics, 15(3), 35-40. https://doi.org/10.14412/2074-2711-2023-3-35-40
Cano Astorga, N. (2019). Microanatomía de la Corteza cerebral Humana: Sinaptología del neuropilo de la capa III del área 21 de Brodmann. Universidad Autónoma de Madrid. http://hdl.handle.net/10261/212963
Castaño J. (2003). Bases neurobiológicas del lenguaje y sus alteraciones. Revista de Neurologia, 36(8), https://neurologia.com/articulo/2002206
Clayton, M. S., Yeung, N. y Cohen Kadosh, R. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48(7), 2498-2508. https://doi.org/10.1111/ejn.13747
Cohen, S. L., Bikson, M., Badran, B. W. y George, M. S. (2022). A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimulation, 15(1), 73-75. https://doi.org/10.1016/j.brs.2021.11.010
Dorian A. y Mandar J. S. (2006). Neuronal spatial learning. Neural Processing Letters, 25(1), 31-47. https://doi.org/10.1007/s11063-006-9029-2
Eimeren L. V., Grabner R.H., Koschutnig K., Reishofer G., Ebner F. y Ansari D. (2010). Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study, NeuroImage,. ELSEVIER, 52(1), 358-363. https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.04.001.
El-Baba, R.M. y Schury, M. P. (2023, May 29). Neuroanatomy, Frontal Cortex. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK554483/
Fitzgerald, P. B. y Daskalakis, Z. J. (2013). rTMS-Associated Adverse Events, Safety and Monitoring. In Repetitive Transcranial Magnetic Stimulation Treatment for Depressive Disorders (pp. 81-90). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36467-9_7
Ford, B. J. (2009). On Intelligence in Cells: The Case for Whole Cell Biology. Interdisciplinary Science Reviews, 34(4), 350-365. https://doi.org/10.1179/030801809X12529269201282
Franco J. (2004). Estimulación magnética transcraneal: su uso actual en neuropsiquiatría. MedUNAB, 7(20). https://revistas.unab.edu.co/index.php/medunab/article/view/226
Frech, A. (2015). Estimulación magnética transcraneal y neuromodulación. Presente y futuro en neurociencias. Neurología, 30(4), 256. https://doi.org/10.1016/j.nrl.2015.02.001
Guse, B., Falkai, P. y Wobrock, T. (2010). Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. Journal of Neural Transmission, 117(1), 105-122. https://doi.org/10.1007/s00702-009-0333-7
Guyton, A. C. y Hall. John E. (2016). Guyton y Hall. Tratado de fisiología médica. (13a ed.).
Hamlin, D. y Garman, J. (2023). A Brief History of Transcranial Magnetic Stimulation. American Journal of Psychiatry Residents’ Journal, 18(3), 8-10. https://doi.org/10.1176/appi.ajp-rj.2023.180303
Herweg, N. A., Solomon, E. A. y Kahana, M. J. (2020). Theta Oscillations in Human Memory. Trends in Cognitive Sciences, 24(3), 208-227. https://doi.org/10.1016/j.tics.2019.12.006
Jan, M. M. (2017). Transcranial Magnetic Stimulation and Epilepsy. International Journal Of Medical Science And Clinical Invention, 4(10). https://doi.org/10.18535/ijmsci/v4i10.07
Javed K., Reddy V., Das J. M. y Wroten M. (2023, July 24). Neuroanatomy, Wernicke Area. StatPearls [Internet]. Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK533001/
Lamas, H. A. (2015). School Performance. Propósitos y Representaciones, 3(1), 351-386. https://doi.org/10.20511/pyr2015.v3n1.74
León, M., Rodríguez, M. L., Rodríguez, S. L., León, B. J., García E. y Arce, S. (2018). Evidencias actuales sobre la estimulación magnética transcraneal y su utilidad potencial en la neurorrehabilitación postictus: Ampliando horizontes en el tratamiento de la enfermedad cerebrovascular. Neurología, 33(7), 459-472. https://doi.org/10.1016/j.nrl.2016.03.008
Lopez, C. L. y Kabar, M. (2023). Historia y principios básicos de la estimulación magnética transcraneal. Horizonte Médico (Lima), 23(3), e2237. https://doi.org/10.24265/horizmed.2023.v23n3.09
Malavera, M., Silva, F., García, R., Rueda, L. y Carrillo, S. (2014). Fundamentos y aplicaciones clínicas de la estimulación magnética transcraneal en neuropsiquiatría. Revista Colombiana de Psiquiatría, 43(1), 32-39. https://doi.org/10.1016/S0034-7450(14)70040-X
Mayor L. C., Burneo J. y Ochoa J. (2013). Manual de electroencefalografía: Handbook of Electroencephalography. Ediciones Uniandes-Universidad de los Andes. https://books.google.com.mx/books?id=c8JdDwAAQBAJ&pg=PA79&hl=es&source=gbs_toc_r&cad=2#v=onepage&q&f=false
Michel, C. M., Henggeler, B., Brandeis, D. y Lehmann, D. (1993). Localization of sources of brain alpha/theta/delta activity and the influence of the mode of spontaneous mentation. Physiological Measurement, 14(4A), A21-A26. https://doi.org/10.1088/0967-3334/14/4A/004
Mikellides, G., Michael, P., Schuhmann, T. y Sack, A. T. (2021). TMS-Induced Seizure during FDA-Approved Bilateral DMPFC Protocol for Treating OCD: A Case Report. Case Reports in Neurology, 13(3), 584-590. https://doi.org/10.1159/000518999
Reis, H., Guatimosim, C., Paquet, M., Santos, M., Ribeiro, F., Kummer, A., Schenatto, G., Salgado, J., Vieira, L., Teixeira, A. y Palotas, A. (2009). Neuro-Transmitters in the Central Nervous System and their Implication in Learning and Memory Processes. Current Medicinal Chemistry, 16(7), 796-840. https://doi.org/10.2174/092986709787549271
Ríos J., Tinoco H. y Fernández J. (2015). Electroencefalografía y desempeño académico en estudiantes de Medicina UJED Durango. Revista Iberoamericana de Producción Académica y Gestión Educativa., 2(4), 16-17. https://www.pag.org.mx/index.php/PAG/article/view/367/0
Starnes, K., Britton, J. W., Burkholder, D. B., Suchita, I. A., Gregg, N. M., Klassen, B. T. y Lundstrom, B. N. (2022). Case Report: Prolonged Effects of Short-Term Transcranial Magnetic Stimulation on EEG Biomarkers, Spectral Power, and Seizure Frequency. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.866212
Stultz, D. J., Osburn, S., Burns, T., Pawlowska-Wajswol, S. y Walton, R. (2020). Transcranial Magnetic Stimulation (TMS) Safety with Respect to Seizures: A Literature Review. Neuropsychiatric Disease and Treatment, Vol. 16, 2989–3000. https://doi.org/10.2147/NDT.S276635
Tikka, S., Siddiqui, Ma., Garg, S., Pattojoshi, A. y Gautam, M. (2023). Clinical practice guidelines for the therapeutic use of repetitive transcranial magnetic stimulation in neuropsychiatric disorders. Indian Journal of Psychiatry, 65(2), 270. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_492_22
Tulviste, J., Goldberg, E., Podell, K. y Bachmann, T. (2016). Effects of repetitive transcranial magnetic stimulation on non-veridical decision making. Acta Neurobiologiae Experimentalis, 76(3), 182-191. https://doi.org/10.21307/ane-2017-018}
Universidad Juárez del Estado de Durango UJED. (2018). Anuario estadístico UJED 2018. https://www.ujed.mx/doc/publicaciones/anuarios-estadisticos/Anuario_estadistico_2018.pdf
Universidad Juárez del Estado de Durango UJED. (12 de julio de 2019). Se fortalece la tutoría para evitar la reprobación, deserción y abandono escolar en UJED. Dirección de Comunicación Social. https://www.ujed.mx/noticias/2019/07/se-fortalece-la-tutoria-para-evitar-la-reprobacion-desercion-y-abandono-escolar-en-ujed
Universidad Juárez del Estado de Durango UJED (2021). Anuario estadístico UJED 2021. https://www.ujed.mx/doc/publicaciones/anuarios-estadisticos/Anuario_estadistico_2021.pdf
Universidad Juárez del Estado de Durango UJED. (2022). Bianuario estadístico UJED 2019-2020. https://www.ujed.mx/doc/publicaciones/anuarios-estadisticos/Bianuario_estadistico_2022.pdf
Universidad Nacional Autónoma de México UNAM y Departamento de fisiología, (2022). Fisiología de la actividad eléctrica del cerebro. En fisiologia.famed.unam.mx [Digital]. https://fisiologia.facmed.unam.mx/wp-content/uploads/2019/09/UTI-pr%C3%A1ctica-7-a.-Electroencefalograma.pdf
Vera J. A., Ramos D. Y., Sotelo M. A., Echeverría S., Serrano D.M. y Vales J. J. (2012). Factores asociados al rezago en estudiantes de una institución de educación superior en México. Revista Iberoamericana de Educación Superior, 3(7), 41-56. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-28722012000200003
Wallroth R. y Ohla K. (2018). Delta activity encodes taste information in the human brain. BioRxiv (Cold Spring Harbor Laboratory) Neuroimage. https://doi.org/https://doi.org/10.1101/300194
Wentao H., Rui F., Mingqiang Z., Haijun Z. y Chong D. (2023). Effects of repetitive transcranial magnetic stimulation on neuronal excitability and ion channels in hindlimb unloading mice. Journal of Biomedical Engineering, 40(1), 8-19. https://doi.org/10.7507/1001-5515.202205008
This work is licensed under a Creative Commons Attribution 4.0 International License.
In order to promote the development and dissemination of research in education in Latin America, the Ibero-American Journal for Educational Research and Development (RIDE) adhered to the Budapest Open Access Initiative, which is why it is identified as a Open access publication. This means that any user can read the complete text of the articles, print them, download them, copy them, link them, distribute them and use the contents for other purposes. Creative Cummons licenses allow users to specify the rights to use an open access journal available on the Internet in such a way that users know the rules of publication. Authors who publish in this journal accept the following conditions: Authors they keep the author's rights and give the magazine the right of the first publication, with the work registered with the attribution license of Creative Commons, which allows third parties to use the published material whenever they mention the authorship of the work and the first publication in this The authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that The work was published for the first time in this magazine. Authors are allowed and recommended to publish their work. low on the Internet (for example on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and faster dissemination of the published work