Identification of profiles in the satisfaction of users of digital repositories through a regression tree

Abstract

In recent years, universities have sought to provide access to digital repositories in order to ease the location of information sources that aid the scientific research process. Nevertheless, there are few studies that address their user satisfaction. This paper presents the results of a research that was conducted with the aim of understanding the satisfaction of university students on the use of digital repositories. A 26-item questionnaire organized in seven dimensions was admnistered to 219 participants from the Autonomous University of Tamaulipas, from the Nuevo Laredo and Ciudad Victoria, Tamaulipas, Mexico campuses. The following variables were studied as possible predictors of user satisfaction: a) related to the interface of the repository: interactivity, confidence, access opportunity, ease of use, visual attractiveness, innovation and b) related to the student: Sex, maximum level of education, and campus location. SPSS statistical package was used to perform the data mining technique called "regression tree" with the Classification and Regression Tree (CRT) growth method. We obtained a tree describing three profiles with low, medium and high levels of satisfaction. Participants with low levels of satisfaction were those who found that repositories were not easy to use. An average level of satisfaction was observed in people who perceived the repositories as easy to use, not dependable, and with a low level of innovation. The highest levels of satisfaction were observed in students who perceived repositories as dependable and easy to use. The results contribute to the understanding of user satisfaction in terms of the studied variables with the objective of prioritizing them in the design and implementation of new institutional repositories to provide better user experiences and optimal exploitation of these resources.

Downloads

Download data is not yet available.

References

Adewumi, A., Omoregbe, N. y Misra, S. (2016). Usability Evaluation of Mobile Access to Institutional Repository. International Journal of Pharmacy and Technology, 8(4), 22892-22905.

Babini, D., González, J., López, F. y Medici, F. (2010). Construcción social de repositorios institucionales: el caso de un repositorio de América Latina y el Caribe. Información, Cultura y Sociedad, (23), 63-92. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-17402010000200004.

Berlanga, S. V., Rubio, H. M. y Vilá Baños, R. (2013). Cómo aplicar árboles de decisión en SPSS. REIRE Revista d'Innovació i Recerca in Educació, 6(1), 65-79.

Casella, M. (2010). Institutional Repositories: an Internal and External Perspective on the Value of IRs for Researchers' Communities. Liber Quarterly, 20(2), 210-225. Doi: 10.18352/lq.7989.

Fushimi, M., Genovés, P., Pené, M. y Unzurrunzaga, C. (2011). Indicadores para evaluar repositorios universitarios argentinos, de la teoría a la práctica. Segundo Taller de Indicadores de Evaluación de Bibliotecas. La Plata, Argentina: Universidad Nacional de La Plata.

Hernández Salazar, P. (2011). La importancia de la satisfacción del usuario. Documentación de las Ciencias de la Información, 34, 349-368. Doi: 10.5209/rev_DCIN.2011.v34.36463.

Huwe, T. (2017). Building Digital Libraries: Digital Repositories Face Changing User Expectations. Computers in Libraries, 37(7), 16-18.

Iriondo, I., Vázquez, E. y Jiménez, J. (2010). Satisfacción y uso del campus virtual UCM: la perspectiva de los estudiantes. VI Jornadas de Campus Virtual UCM. Madrid, España: Universidad Complutense de Madrid.

McKay, D. (2007). Institutional Repositories and Their 'Other' Users: Usability Beyond Authors. ARIADNE. Web Magazine for Information Professionals, 52, 1-3.

Oliva Marañón, C. (2012). Bibliotecas digitales universitarias en España y TIC como paradigmas de las necesidades de información para docentes y discentes. Biblios, 49, 65-75. Doi: 10.5195/biblios.2012.69.

Pérez-Marqués, M. (2015). Minería de datos a través de ejemplos. México: Alfaomega.

Sandobal Verón, V., Cernadas, M., Cuenca Pletsch, L. y Maurel, M. (2016). ¿Pueden aplicarse las herramientas de evaluación web a la evaluación de repositorios de objetos de aprendizaje? III Congreso Argentino de Ingeniería. IX Congreso de Enseñanza de la Ingeniería. Resistencia. Argentina: NA.

Santovenia Díaz, J. R. (2010). Propuesta de un sistema de actividades docentes para el conocimiento de los repositorios científicos. Ciencias de la Información, 41(2), 39-44.

Serrano, R., Melero Melero, R. y Abadal, E. (2014). Indicadores para la evaluación de repositorios institucionales de acceso abierto. Anales de Documentación, 17(2), 1-12. Doi: 10.6018/analesdoc.17.2.190821.

Song, Y. and Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130-135. Doi: 10.11919/j.issn.1002-0829.215044.

Sulé Duesa, A., Estivill Rius, A. y Gascón García, J. (2011). Evaluación de las interfaces de consulta de las colecciones digitales patrimoniales españolas. Anales de Documentación, 14(2), 1-21.

Velázquez, C., Álvarez, F., Muñoz, J., Cardona, P., Silva, A., Hernández, Y. y Cechinel, C. (2014). Un estudio de la satisfacción obtenida con el uso de objetos de aprendizaje. IX Latin American Conference on Learning Objects and Technologies. Manizales, Colombia.

Zikmund, W., Barry, B., Carr, J. and Griffin, M. (2013). Business Research Methods. Mason, Ohio, Estados Unidos: Cengage Learning.

Published
2018-06-18
How to Cite
Roque Hernández, R. V., Medina Quintero, J. M., López Mendoza, A., & Ábrego Almazán, D. (2018). Identification of profiles in the satisfaction of users of digital repositories through a regression tree. RIDE Revista Iberoamericana Para La Investigación Y El Desarrollo Educativo, 9(17), 1 - 19. https://doi.org/10.23913/ride.v9i17.367
Section
Scientific articles