Design of Industrial Equipment Maintenance Analysis Methodology through the use of Kalman Filter and Dynamic Bayesian Networks

  • Secundino Ramos Lozano Universidad Autónoma de Ciudad Juárez
  • Manuel Arnoldo Rodríguez Medina Tecnológico Nacional de México
  • Eduardo Rafael Poblano Ojinaga Tecnológico Nacional de México
  • Jesús Manuel Barraza Contreras Universidad Autónoma de Ciudad Juárez

Abstract

Due to the high level of industrial competition companies strive to enhance their operational efficiency by reducing costs without affecting the quality of their products. One of the most common approaches to achieving this goal is optimizing the operation of production equipment. Therefore, this research develops a methodology for failure analysis aimed at identifying root causes and improving equipment and machinery performance. The methodology employs dynamic Bayesian network for failure analysis. This tool provides valuable information about the probability of failure occurrence, allowing the prioritization of corrective actions to eliminate failures and reduce their incidence. Additionally, for equipment requiring continuous monitoring, the Kalman filter and, when applicable, the extended Kalman filter are employed., Its purpose is to eliminate noise in the data acquisition process, ensuring reliable information for analysis. Moreover, it enables the accurate estimation of certain variables in locations where direct measurement is challenging or unfeasible. Implementing this methodology leads to substantial improvements in the failure analysis process, making corrective actions more effective in eliminating failures.

Downloads

References

Aghamolki, G. H., Miao, Z., Fan, L., Jiang, W. y Manjure, D. (2015). Identification of synchronous generator model with frequency controlusing unscented Kalman filter. Electric Power Systems Research, 45-55. doi:http://dx.doi.org/10.1016/j.epsr.2015.04.016

Ai, Ai, X., Gray, H. M., Salzburger, A. y Styles, N. (2023). A non-linear Kalman filter for track parameters estimation in high energy physics. Nuclear Inst. and Methods in Physics Research, 168041.

Altoé Mendes, M., Riva Tonini, L. G., Rodrigues Muniz, P. y Bravin Donadel, C. (2016). Thermographic analysis of parallelly cables: A method to avoid misdiagnosis. Applied Thermal Engineering, 231-236. doi:https://doi.org/10.1016/j.applthermaleng.2016.05.072

Auger, F., Hilairet, M., Guerrero, J. M., Monmason, E., Orlowska-Kowalska, T. y Katsura, S. (2013). Industrial Applications of the Kalman Filter: A Review. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. doi:https://doi.org/10.1109/TIE.2012.2236994

Babu, P. y Parthasarathy, E. (2022). FPGA implementation of multi-dimensional Kalman filter for object tracking and motion detection. En Elsevier (Ed.), Engineering Science and Technology, an International Journal, (pág. 101084). doi:https://doi.org/10.1016/j.jestch.2021.101084

Conrady, S. y Joufee, L. (2015). Bayesian Networks & BayesiaLab-A practical Introduction for Researchers. Franklin TN: Bayesia USA.

Faragher, R. (2012). Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation. IEE signal Processing Magazine. doi:10.1109/msp2012.2203621

Gaouti, Y. E. Colin, G., Thiam, B., y Mazellier, N. (2021). Online vehicle aerodynamic drag observer with Kalman filters. International Federation of Automation Control, (págs. 51-56). Orleans, France. doi:https://doi.org/10.1016/j.ifacol.2021.06.008

González-Cagigal, M., Rosendo-Macías, J. A. y Gómez-Expósito, A. (2019). Parameter estimation of fully regulated synchronous generators using Unscented Kalman filters. Electric Power Systems Research, 210-217. doi:https://doi.org/10.1016/j.epsr.2018.11.018

Grzegorczyk, M. (2024). Being Bayesian about learning Bayesian networks from ordinal data. International Journal of Approximate Reasoning, 109205. doi:https://doi.org/10.1016/j.ijar.2024.109205

Huang , M., Li, W. y Yan, W. (2010). Estimating parameters of synchronous generators using square-root unscented Kalman filter. Electric power System Research, 1137-1144. doi:https://doi.org/10.1016/j.epsr.2010.03.007

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME - Journal of Basic Engineering, 82(1) 35-45 doi: https://doi.org/10.1115/1.3662552

Khan, B., Khan, F. y Veitch, B. (2020). A Dynamic Bayesian Network model for ship-ice collision risk in the Arctic waters. Safety Science, 104858. doi:https://doi.org/10.1016/j.ssci.2020.104858

Kim, S., Petrunin, I. y Shin, H.-S. (2022). A Review of Kalman Filter With Artificial Intelligence Techniques. Integrated Communication, Navigation and Surveillance Conference. Dulles, USA. doi:https://doi.org/10.1109/ICNS54818.2022.9771520

Kraisangka, J. y Druzdzel, M. J. (2018). A Bayesian network interpretation of the Cox’s proportional hazard model. International Journal of Approximate Reasoning, 195-211. doi:https://doi.org/10.6000/1929-6029.2014.03.01.5

Leão, T., Madeira, S. C., Gromicho, M., de Carvalho, M. y Carvalho, A. M. (2021). Learning dynamic Bayesian networks from time-dependent and time-independent data: Unraveling disease progression in Amyotrophic Lateral Sclerosis. Journal of Biomedical Informatics, 103730. doi:https://doi.org/10.1016/j.jbi.2021.103730

Mao, H., Xu, N., Li, X., Li, B., Xiao, P., Li, Y. y Li, P. (2023). Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks. Journal of Rock Mechanics and Geotechnical Engineering. doi:https://doi.org/10.1016/j.jrmge.2022.12.005

Masnadi-Shirazi, H., Masnadi-Shirazi, A., & Dastgheib, M. A. (2019). A Step-by-Step Mathematical Derivation and Tutorial on Kalman Filters. arXiv preprint arXiv:1910.03558. https://doi.org/10.48550/arXiv.1910.03558

Moleda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From Corrective to Predictive Maintenance—A Review of Maintenance Approaches for the Power Industry. Sensors, 23(13). doi:https://doi.org/10.3390/s23135970

Mourtzis, D., Siatras, V., & Angelopoulos, J. (2020). Real-Time Remote Maintenance Support Based on Augmented Reality (AR). applied sciences, 10(5), 1855. https://doi:https://doi.org/10.3390/app10051855

Ramos Lozano, S., Rodríguez Medina, M. A., Herrera Ríos, E. B. y Poblano Ojinaga, E. R. (2024). Reducción de Riesgo de Fallos en Impresora 3D Mediante el uso Secuencial De DFMEA, Árbol De Fallos y Redes Bayesianas. DYNA ingeniería, 99, 78-84. doi:https://doi.org/10.6036/10794

Reguero Alvarez, J. (2011). Aplicación de las redes bayesianas dinámicas a la predicción de series de datos y a la detección de anomalías. Madrid, España.

Saada, M., Kouppas, C., Li, B. y Meng, Q. (2022). A multi-object tracker using dynamic Bayesian networks and a residual neural network based similarity estimator. Computer Vision and Image Understanding, 10369. doi:https://doi.org/10.1016/j.cviu.2022.103569

Saeidi, M., Soufian, M., Elkurdi , A., & Nefti-Meziani, S. (2019). A Jet Engine Prognostic and Diagnostic System Based on Bayesian Classifier. 2019 12th International Conference on Developments in eSystems Engineering (DeSE), (págs. 975-977). Kazan, Rusia. doi:https://doi.org/10.1109/DeSE.2019.00181

Sánchez-Herguedas, A. Mena-Nieto, A., Crespo-Marquez, A., y Rodrigo-Muñoz, F. (2024). Finite time preventive maintenance optimization by using a Semi-Markov process with degraded state. A case of study for Diesel engines in mining. Computer & Industrial Engineering, 110083. doi:https://doi.org/10.1016/j.cie.2024.110083

Shabbouei Hagh, Y., Mohammadi, M., Mikkola, A. y Handroos, H. (2023). An experimental comparative study of adaptive sigma-point Kalman filters: Case study of a rigid–flexible four-bar linkage mechanism and a servo-hydraulic actuator. Mechanical Systems and Signal Processing (pág. 110148).
Elsevier Ltd. doi:https://doi.org/10.1016/j.ymssp.2023.110148

Wei, L., Yu, H., & Li, B. (2023). Energy financial risk early warning model based on Bayesian network. (Elsevier, Ed.) Energy Reports (ISSN 2352-4847), 2300-2309. doi:https://doi.org/10.1016/j.egyr.2022.12.151

Welch, G. y Bishop, G. (1997). An Introduction to the Kalman Filter. Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina, USA. https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
Published
2025-03-12
How to Cite
Ramos Lozano, S., Rodríguez Medina, M. A., Poblano Ojinaga, E. R., & Barraza Contreras, J. M. (2025). Design of Industrial Equipment Maintenance Analysis Methodology through the use of Kalman Filter and Dynamic Bayesian Networks. RIDE Revista Iberoamericana Para La Investigación Y El Desarrollo Educativo, 15(30). https://doi.org/10.23913/ride.v15i30.2331
Section
Scientific articles

Most read articles by the same author(s)